0254-6124/2022/42(5)-0873-11

Chin. J. Space Sci.  FRFFFIK

LI Hui, WANG Runze, WANG Chi. Prediction of Partial Ring Current Index Using LSTM Neural Network. Chinese Journal of Space Science,

2022, 42(5): 873-883. DOI:10.11728/¢jss2022.05.210513061

Prediction of Partial Ring Current Index Using
LSTM Neural Network®

LIHui WANG Runze WANG Chi

(State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190)

(University of Chinese Academy of Sciences, Beijing 100049)

Abstract The local time dependence of the geomagnetic disturbances during magnetic storms indicates the ne-
cessity of forecasting the localized magnetic storm indices. For the first time, we construct prediction models for
the SuperMAG partial ring current indices (SMR-LT), with the advance time increasing from 1 h to 12 h by Long
Short-Term Memory (LSTM) neural network. Generally, the prediction performance decreases with the advance
time and is better for the SMR-06 index than for the SMR-00, SMR-12, and SMR-18 index. For the predictions
with 12 h ahead, the correlation coefficient is 0.738, 0.608, 0.665, and 0.613, respectively. To avoid the over-repre-
sented effect of massive data during geomagnetic quiet periods, only the data during magnetic storms are used to
train and test our models, and the improvement in prediction metrics increases with the advance time. For example,
for predicting the storm-time SMR-06 index with 12 h ahead, the correlation coefficient and the prediction efficien-
cy increases from 0.674 to 0.691, and from 0.349 to 0.455, respectively. The evaluation of the model performance
for forecasting the storm intensity shows that the relative error for intense storms is usually less than the relative er-

ror for moderate storms.
Key words
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0 Introduction

Geomagnetic storms are violent global disturbances in
the Earth’s magnetosphere, which are one of the conse-
quences of enhanced solar wind-magnetosphere energy
coupling through the magnetic reconnection mecha-
nism!'?. Generally, the high-speed solar wind with sus-
tained southward Interplanetary Magnetic Field (IMF)
contributes to an intensification of the Earth’s westward
ring current, leading to a geomagnetic storm featured
with a depression in the horizontal component (H-com-

ponent) of the geomagnetic field, which can be assessed

Geomagnetic storm, Partial Ring Current Index (PRCI), Artificial Neural Network (ANN)

by the Dst index” . The Dst index is based on mea-
surements from magnetometers at 4 ground observato-
ries near the equator and represents the effects of sever-
al current systems (such as the ring current, the tail cur-
rents, and the Chapman-Ferraro current) in the low-lati-
tude geomagnetic field. A typical geomagnetic storm is
composed of three phases. First, there is a sudden or
gradual rise of Dst corresponding to the storm com-
mencement (initial phase). After storm commencement,
Dst remains undulating at a level higher than the pre-
storm value, lasting from a few minutes to several hours.

Second, as the ring current intensifies, the value of Dst
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drops rapidly to its minimum value with intense fluctua-
tions (main phase). Finally, along with the decrease of
disturbances, Dst rises back to its quiet level slowly (re-
covery phase).

Geomagnetic storms have been one of the most
challenging and passionately explored topics in the geo-
physical community. This is not only because geomag-
netic storms have a significant impact on the global geo-
magnetic field pattern, but also because they are the
most important link in the solar-terrestrial energy cou-
pling chain. Moreover, geomagnetic storms have seri-
ous effects on technological infrastructure such as com-
munication systems, electric power systems, oil pipe-
lines, and space vehicles. Therefore, the prediction of
geomagnetic storms has important theoretical and practi-
cal value.

Researches on Dst forecasting have been conduct-
ed since the 1970s. Burton ez al. ' developed an empi-
rical algorithm for forecasting Dst using solar wind ve-
locity and density and the north-south component of the
IMF, which contains an approximate description of the
effects of solar wind dynamic pressure, particle injec-
tion from the plasma sheet, and exponential decay, con-
strained by ordinary differential equations. Based on this
model, several additional assumptions are made to cha-
racterize this nonlinear behavior'® ).

In addition to models constructed based on empiri-
cal formulas, there are also researches on Dst forecast-
ing from a data science perspective. One of the widely
popular approaches is the construction of machine learn-
ing models through Artificial Neural Networks (ANN).
Lundstedt and Wintoft"”’ developed a feedforward neu-
ral network to predict Dst 1 h ahead, using the density
and the velocity of the solar wind and the z-component
of IMF, which can predict the initial and main phases of
magnetic storms. Later an ANN with a specific struc-
ture called Recurrent Neural Network (RNN) was intro-
duced to further improve the forecasting effective-
ness' '\, Different optimization techniques have also
been employed for Dst forecasting. Wei et al. 121 ysed
multiscale radial basis networks by changing the activa-
tion function of the hidden layer neurons. Lazzs et al. (3
achieved Dst forecasts up to 6 h in advance employing a
swarm optimization algorithm. Gruet et al'™ further
achieved better results on Dst forecasting 1~6 h in ad-
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vance using the Long Short-Term Memory (LSTM) net-
work. Besides, algorithms such as k-Nearest Neighbors
(KNN), Nonlinear Auto Regressive Moving Average
with eXogenous inputs (NARMAX), and Support Vec-
tor Machine (SVM) have been introduced to Dst fore-
casting and other topics in space physics[lsfm .

Although the Dst index has a clear physical inter-
pretation, its implicit simplified assumption of az-
imuthally invariant H perturbations from low or mid-lat-
itude ground stations is not often consistent with obser-
vations. A significant dawn-dusk asymmetry of H de-
pression tends to occur during storms (see Li et al. s
and references therein). Given this observed strong Lo-
cal Time (LT) variations in the H-component at mid-lati-
tude stations, Newell and Gjerloev 1) introduced the Su-
perMAG Ring current index (SMR index), and Super-
MAG partial Ring current indices (SMR-LT indices).
SuperMAG is a worldwide collaboration of organiza-
tions and national agencies that currently operate more
than 300 ground-based magnetometers. Using 98 low
and midlatitude magnetometers, the SMR index is con-
ceptually the same as the Dst index, and its local time
version, SMR-LT, including SMR-00, SMR-06, SMR-
12, and SMR-18, contains local time components named
after their respective local time center point, represent-
ing midnight, dawn, noon and dusk. The SMR global in-
dex is the arithmetic mean of SMR-LT indices.

In this work, we first analyze the asymmetry of
SMR-LT indices during geomagnetic storms from sever-
al different perspectives. The study of the results shows
the importance to predict the SMR region index. We
then apply an artificial neural network approach, LSTM,
to this topic to provide a forecast of the SMR-LT in-
dices 1~12 h in advance. To improve the forecasting
performance of the storm-time data, we train a new
model using only the data during storms and analyze the
model’s performance in predicting the intensity of mag-

netic storms.
1 Importance of Partial Ring Current

Index Prediction

The hourly partial ring current indices, SMR-LT, and the

corresponding averaged index, SMR, are obtained from



LI Hui et al.: Prediction of Partial Ring Current Index Using LSTM Neural Network

SuperMAG*. During the concerned period from 1998 to
2019, 318 magnetic storms are analyzed.

Liet al. "™ presented a significant dawn—dusk asy-
mmetry of Dst index during the storm main phase and
early recovery phase due to the important contribution of
the partial ring current during magnetic storm processes.
Fig.1 shows the evolution of partial ring current indices
during the magnetic storm on 26 August 2018. As ex-
pected, the four SMR-LT indices differ significantly in
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the main phase and early recovery phase. The depres-
sion of H-components of geomagnetic field distur-
bances on the dusk side, such as SMR-18 and SMR-12,
is generally larger than that on the dawn side, such as
SMR-00 and SMR-06. The minimum values of SMR-00,
SMR-06, SMR-12, and SMR-18 are —156.9 nT, —155.3
nT, —204.4 nT, and —209.3 nT, respectively. Besides, the
SMR-18 index is the earliest to reach its minimum,
while the SMR-00 index reaches its minimum one hour

later. During the later recovery phase, all the indices are

almost the same.
Fig.2 gives the statistical characteristics of SMR-
£ -s0f LT minimum and its time lag to SMR minimum for 318
5 100 magnetic storms. The top panels present the relationship
§ between the relative intensity of SMR-LT indices dur-
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Fig. 2 Statistical characteristics of SMR-LT minimum and its time lag to SMR minimum for 318 magnetic storms
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cases. The mean minimum value of SMR-00, SMR-06,
SMR-12, and SMR-18 for the 318 storms is —111.5 nT,
—80.7 nT, —109.4 nT, and —133.8 nT, which agrees with
the previous results. In addition, the relative intensity for
all the four indices tends to be 1 as the storm intensity
increases, indicating that the ring current tends to be
more symmetric as suggested by Li et al. %) Instead of
the storm intensity, the onset of storm minimum for the
four partial ring current indices also differs from each
other. The bottom panels give the distribution of the
time lag of SMR-LT minimum to SMR minimum. For
SMR-00, SMR-12, and SMR-18, the time lag is concen-
trated within 1 h. The median values of the time lag are
the same, 0. And the mean value is 1.5, 1.6, and —0.7 h,
respectively. For SMR-06, the time lag is greater than 0
in many cases, with the median value of 1 h and the
mean value of 2.2 h.

Thus, predicting the SMR-LT indices instead of the
SMR index is supposed to be more appropriate for re-
gional space weather warning or forecasting.

2 Methodology and Data Set

2.1 LSTM Networks

LSTM is a special kind of RNN. Traditional neural net-
works cannot deal with time series forecasting. How-
ever, RNN can address this issue by designing loops in
networks, allowing information to persist and be passed
from one step of the network to the next step. An RNN
can be regarded as multiple copies of the same network,
with messages that can be passed from one copy to a
successor copy. The chain-like nature reveals that RNN
is intimately related to sequences and lists. However,
when the gap between the relevant information and the
point where it is needed grows too large, RNN becomes
unable to learn to connect the information. The problem
is called “long-term dependencies” , explored in depth

by Bengio et al. (201

, who found it arising from vanishing
gradient problems during the training phase of RNN.
LSTM is explicitly designed to avoid the long-term
dependency problem. It was introduced by Hochreiter
and Schmidhuber ?'"! and was later refined and popula-
rized by many researchers, making it work tremendous-
ly well on a large variety of problems. LSTM also has a
chain-like structure, but the repeating module is differ-

ent. Instead of having a single neural network layer,
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there are four in LSTM, interacting in a very special ap-
proach.

The key to LSTM is the cell state, which runs
straight down the entire chain, with only some minor lin-
ear interactions. One end of the chain is C,_,, which rep-
resents the old cell state, and the other end is C,, which
represents the new cell state. The LSTM is designed to
remove or add information to the cell state, precisely
regulated by structures called gates. Gates are a way to
optionally let information through. They are composed
of a sigmoid neural net layer and a pointwise multiplica-
tion operation. The sigmoid layer outputs numbers be-
tween 0 and 1, describing how much of each component
should be let through. A value of 0 means completely re-
jected, while a value of 1 means perfectly accepted.

An LSTM consists of three gates to protect and
control the cell state, namely forget gate layer, input gate
layer and output gate layer. The forget gate layer is a
sigmoid layer to decide what information to be forgot-
ten from the cell state. It receives h,_, and x,, which
means the output of the precursor copy and the input of
time step ¢, respectively, and outputs a number between
0 and 1, indicating the extent to which the cell state C;_;
is forgotten. For subsequent equations, the notation is
kept that w, and b, represent the corresponding weights
and biases of the layer, respectively.

fi = sigmoid (wy - [hy_1, 2] + by) .

The next step is to decide what new information to

be stored in the cell state, which has two parts. First, a

[1

sigmoid layer called the “input gate layer” decides
which values to be updated. Next, a tanh layer creates a
vector of new candidate values, C,, that could be added
to the state.

1, = sigmoid (w; - [hi_1, x¢] + b;)

C, = tanh (w¢ - [he_1, 2] + be) .

In the next step, these two are combined to update
the old cell state, C,_,, into the new cell state C,. We
multiply the old state by f,, and add itC’t. This is the
new candidate values, scaled by how much we decided

to update each state value.
Cy = ft Ci1 + itét~

Finally, the output gate layer will produce a fil-
tered version of cell state C,. First, a sigmoid layer will
be run, which decides what parts of the cell state to out-
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put. Then, we put the cell state through tanh (to push the
values to be between —1 and 1) and multiply it by the
output of the sigmoid gate, so that we only output the
parts we decided to.

o0, = sigmoid (w, - [h;_1,x,] + b,) ,

h, = o,tanh C,.
2.2 Performance Metrics
In this study, several performance metrics are used to
evaluate the effectiveness of machine learning forecast-
ing models. The root-mean-square error (E,y;), is used to
represent the error between the observed and predicted
values.

1 N
Erms = AT i Ai 2'
N;(y 7)

The Pearson correlation coefficient, C, is used to
represent the linear relationship between the predictions
and the observations. 1/—1 implies a perfect positive/
negative correlation, while 0 indicates no linear correla-

tion.

Cov (y,9)

C= -
VVar (y) Var (y)
Zj\;l (Z/z - gi) (@\z - iz)

\/Zil(y’ - ?i)QZil (5 — 351)2

In addition, the prediction efficiency, P,, is also

used and can be calculated as followed.

N s
E o (vi —us)
P=1-=—=

Zj\]: . (v — )

P, = 1indicates a perfect prediction and P, = 0 in-
dicates that the performance of the model is equivalent
to the situation by the arithmetic mean of the observa-
tion. P, can be negative values, which in this case means
that the model prediction is no better than just taking the
arithmetic mean value of the test data. In contrast to C,
which only reflects the consistency of the trend of the
time series, P, can also indicate the amplitude of the
modeled features, allowing to examine the accuracy of
the forecast.

2.3 Data Pre-processing
The solar wind parameters are obtained from OMNI da-

*https://omniweb.gsfc.nasa.gov
**https://supermag.jhuapl.edu/indices/

ta* maintained by the National Space Science Data
Center (NSSDC) of the National Aeronautics and Space
Administration (NASA). The SMR and SMR-LT in-
dices are obtained from SuperMAG collaborators®*.

A reasonable selection of feature parameters can
make the learning efficiency of ANN greatly improved.
In this study, the solar wind field F, , the solar wind dy-
namic pressure P, the solar wind velocity V,,, the solar
wind density N, the solar wind temperature 7,,, the IMF
strength B, and its z-component B, are used and denot-
ed by D,.

D,=(E, P, V, N, T, B, B,).

The dataset we select from OMNI and SuperMAG
spans the period from 1 January 1998, to 31 December
2019, with a temporal resolution of 1 h. The 22 years
dataset is divided into three parts, namely the training set
(1998—2009), the validation set (2010—2014), and the
test set (2015—2019). More than a complete solar activ-
ity cycle is considered by the training set and the valida-
tion set. A total of 257 magnetic storms are identified
during these two intervals.

We aim to forecast the SMR-LT indices several
hours in advance, denoted as p, which in terms of data
structure means developing an LSTM model for multi-
variate time series forecasting on multiple lag time steps.
In this study, p = 1,3,6,12 h are considered. The first
step is to prepare the dataset for the LSTM, which in-
volves framing the dataset as a supervised learning prob-
lem and normalizing the input variables. We frame the
supervised learning problem as predicting the SMR-LT
index at the current hour given the solar wind parame-
ters on multiple prior time steps. The OMNI data have
already been time-shifted from their location of observa-
tion to the Earth’s bow shock, which is desired to best
support solar wind—magnetosphere coupling studies.
Next, we normalize each feature separately to turn the
physical quantities into a stream of data that can be pro-
cessed by the ANN. After the ANN predicts the results,
we then apply the scaling process to obtain the true
SMR-LT indices.

There are different examples of important design
patterns for RNN. We adopt a neural network with re-

current connections between hidden units, that reads an
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entire sequence and then produces a single output, the
SMR index or one of the SMR-LT indices. We con-
struct two hidden layers, the first layer containing
50 neurons and the second layer containing 100 neurons.
According to the structural characteristics of the data
processed by LSTM, each parameter is a multidimen-
sional vector on the time sequence. The length of the
time sequence, denoted by s, can significantly affect the
model performance. To evaluate this effect, the results
obtained under different s conditions are given in Fig.3.
In general, the model performs best when s = 3. Thus,
we set the length of the time series to be 3 in the follow-
ing study, and Input is, therefore, a 3 X 8 matrix.
Input=(E, P, V, N, T, B, B.)®Index,
Nist : Input (¢ — p) — Index (¢) ,p € {1,3,6,12}.

3 Results

3.1 Performances of the SMR-LT Indices
Predictions

Given 7 input features of the solar wind, a total of 127
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combinations exist. To explore the optimal set of input
parameters for each p, all the possible parameter combi-
nations are tried separately. After comparison, the pa-
rameter space, E,, Py, T, By, B,, performs best and is
applied to the prediction.

To illustrate the reliability of our proposed predic-
tion method, we first compare our prediction results with
the results of persistence operations and the previous re-
sults obtained by Gruet et al. (4 Lethy et al. 21 and
Lazzus et al. ™' in Table 1. The “persistence” opera-
tion serves as the control group, which refers to the di-
rect adoption of the index before p hours as the forecast
result. Gruet ef al. '™ predicted the Dst index from 1 to
6 h ahead with C of 0.966, 0.923, and 0.865, respective-
ly. By applying a similar LSTM algorithm used by Gruet
et al. ", we predict the SMR index from 1 to 12 h
ahead. The C is 0.965, 0.903, 0.824, and 0.705, respec-
tively, which is very close to the results obtained by
Gruet et al. ", The minor differences might come from
the different selections and divisions of the dataset. Us-
ing a different ANN algorithm, Lethy et al. 21 obtained
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0.700
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Fig. 3 Performance of models in forecasting the SMR index using different sequence length (s). The four panels

represent the results when different p are considered
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a better prediction in advance of 6 and 12 h, but a worse
prediction in advance of 1 h and 3 h. Lazzls et al. (23]
obtained predictions from 1 h to 6 h ahead with C' of
0.978, 0.895, and 0.788, respectively. Overall, our re-
sults are roughly comparable to the published models,
which validates the reliability of our model.

Fig.4 gives the scatter plot of the model’s predic-
tions of SMR-LT indices on the test set. The blue line
represents the fitting result, and the black dotted line

represents the exact predictions. The closer of the blue

Table 1 Comparison between Ref. [14], Ref. [22],
Ref. [23], and our proposed model

line to the black dotted line is, the better prediction re-
sults we obtain. It is clear that the predictions are very
close to the observations when p = 1. As p increases, the
deviation of the predictions, mostly undervaluation, to
the observations increases accordingly.

Table 2 gives the quantitative performances of our
prediction models for SMR-00, SMR-06, SMR-12, and
SMR-18 indices. Considering that there is no previous
work on SMR-LT indices predictions, we compare the
model predictions with the results of persistence opera-
tions to quantitatively represent the model ability. Gen-
erally, our model can predict the SMR-LT indices well
from the perspectives of E, s, C, and P,. For the predic-

p/h  Persistence  Ourmodel  Ref. [14] Ref. [22] Ref. [23] tion of SMR-06 with p = 1,3,6,12 h, the E,,, is 5.752,
1 0.945 0.965 0.966 0.845 0.978 6.592, 7.639, and 9.976 nT , respectively, which is 3.4%,
3 0.853 0.903 0.923 0.872 0.895 17.7%, 22.1%, and 18.0% less than the results of persis-
6 0.755 0.824 0.865 0.864 0.788 tence operations; the C is 0.925, 0.873, 0.825, and 0.738,
12 0.592 0.705 — 0.857 — respectively, which is 2.5%, 6.2%, 12.4%, and 25.1%
better than the results of persistence operations; the P, is

100 SMR-00 SMR-06 SMR-12 SMR-18
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Fig. 4 Scatter plot of the model’s predictions of SMR-LT indices on the test set. The blue line represents

the fitting result, and the black dotted line represents the exact prediction
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0.817, 0.759, 0.677, 0.449, respectively, which is 1.6%,
17.7%, 44.7%, and 149.4% better than the results of per-
sistence operations. For the prediction of SMR-18 with
p=1,3,6,12 h, the E,s is 7.316, 10.692, 14.022, and
16.836 nT, respectively, which is 19.3%, 20.9%, 14.0%,
and 15.2% less than the results of persistence operations;
the C is 0.934, 0.844, 0.743, and 0.613, respectively,
which is 4.4%, 10.0%, 12.4%, and 23.1% better than the
results of persistence operations; the P, is 0.864, 0.708,
0.499, 0.277, respectively, which is 9.4%, 32.6%,
55.0%, and 5440.0% better than the results of persis-
tence operations. For the predictions of SMR-00 and
SMR-12 index, the results are similar. It is clear that the
prediction performances decrease with p, however, the
improvements to persistence significantly increase with p.
3.2 Performances of SMR-LT Index Forecast
during Magnetic Storms

The problem of the underestimated predictions shown in
Fig.4 might come from the training data structure. In the
previous section, all of the dataset is used to train our
models. The whole dataset contains a total of 192839 da-
ta, of which only 65071 data, or about 33.74%, are dur-
ing 318 magnetic storms. In the case of intense storms
with an intensity of less than —100 nT, there are only
6452 data, accounting for about 3.35%. The overweight-
ing of data during magnetic quiet periods, which is not
the focus of the study, might affect the preference of the
trained machine learning model, making it always bi-
ased to underestimate the intensity of magnetic storms
and becomes more prominent for a longer forecast lead
time. Thus, although governed by the same fundamental

laws of physics, it is still necessary to separate the data
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during magnetic storms from all-time series from the
perspective of data science. Note that, the parameter
space with the best performance changes to E,, Py,
Vy, Np, By, B,. Fig.5 shows an example of the predicted
SMR-LT indices during the storm on 26 August 2018.
When p = 1, 3 h, the predictions are similar to the obser-
vations, especially for the SMR-00 and SMR-06 index.
When p = 6, 12 h, the deviations of the predictions from
the observations are more significant.

Table 3 gives the quantitative performances of our
prediction models for SMR-00, SMR-06, SMR-12, and
“ All-time”
represents that all the dataset are used to train the model

SMR-18 indices during magnetic storms.

and the metrics are calculated based on the predictions
during magnetic storms. However, “storm” represents
that only the dataset during magnetic storms is used to
train the model and the metrics are calculated based on
the predictions during magnetic storms as well. Com-
pared to the results shown in Table 2, the C and P, of
both “persistence” and “all-time” have different de-
grees of reductions due to the removal of the data dur-
ing magnetic quiet periods, and the reductions increase
with the lead time of prediction. At the same time, the
results of “storm” are better than the results of “all-
time” , and the performance improvement increases with
the lead time of prediction. For the prediction of SMR-
06 with p = 1, 3,6, 12 h, the improvement of C is 0.2%,
0.3%, 1.4%, and 2.5%, respectively; the improvement of
P, is 3.6%, 1.5%, 4.0%, and 30.4%, respectively. For the
prediction of SMR-18 with p =1,3,6,12 h, the
provement of C is 0.1%, 1.1%, 2.5%, and 8.3%, respec-
tively; the improvement of P, is —0.1%, —0.6%, 12.2%,

im-

Table 2 Performance of SMR-LT indices forecast

p=1h p=3h p=6h p=12h
Erms C PC Erms C Pe Erms C PS Erms C Pe
SMR-00 Persistence 8.942 0.838 0.675 11.384 0.737 0.474 13.438 0.633 0.267 16.049 0.477 —-0.046
Model 7.468 0.883 0.773 8.616 0.836 0.699 10.793  0.737 0.527 13.350  0.608  0.276
SMR-06 Persistence 5.957 0.902 0.804 8.012 0.822 0.645 9.804 0.734 0.468 12.172 0.590  0.180
Model 5.752 0925 0.817 6.592  0.873 0.759 7.639  0.825 0.677 9.976  0.738  0.449
SMR-12 Persistence 8.054 0.893 0.786 11.886 0.767 0.534 13.898 0.682 0.363 16.899 0.529  0.059
Model 6.473 0928 0.862 9.884 0.826 0.678 11.485 0.769 0.565 13.811 0.665 0.371
SMR-18 Persistence 9.065 0.895 0.790 13.517 0.767 0.534 16311 0.661 0.322 19.851 0.498 —0.005
Model 7.316  0.934 0.864 10.692 0.844 0.708 14.022  0.743  0.499 16.836 0.613  0.277
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Fig. 5 Evolution of observed (in black) and predicted (in blue) SMR-LT indices during the storm on 26 August 2018

Table 3 Performance of storm-time SMR-LT indices prediction

p=1h p=3h p=6h p=12h
C Pe c P. C P C P.

SMR-00 Persistence 0.838 0.675 0.726 0.452 0.597 0.194 0.352 -0.296
All-time 0.885 0.783 0.838 0.700 0.724 0.485 0.526 0.134

Storm 0.887 0.759 0.840 0.704 0.734 0.499 0.552 0.257

SMR-06 Persistence 0.896 0.793 0.804 0.608 0.686 0.372 0.457 —0.087
All-time 0.922 0.823 0.868 0.748 0.807 0.642 0.674 0.349

Storm 0.924 0.853 0.871 0.759 0.818 0.668 0.691 0.455

SMR-12 Persistence 0.895 0.789 0.763 0.525 0.647 0.293 0.406 —0.189
All-time 0.934 0.872 0.829 0.674 0.758 0.532 0.595 0.250

Storm 0.935 0.875 0.840 0.705 0.770 0.552 0.618 0.316

SMR-18 Persistence 0.894 0.788 0.756 0.513 0.613 0.226 0.361 —-0.278
All-time 0.935 0.872 0.842 0.698 0.718 0.435 0.516 0.106

Storm 0.936 0.871 0.851 0.694 0.736 0.488 0.559 0.214

and 101.9%, respectively. For SMR-00 and SMR-12 in-  prediction performances decrease with p, however, the

dex, the improvements are similar. It is clear that the improvements significantly increase with p.
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3.3 Performance of Storm Intensity Prediction
Table 4 gives the distribution of different magnetic
storms intensity on the dataset, and Table 5 gives the
mean values and standard deviations of the relative er-
rors of storm intensity predictions. There are 61 magnet-
ic storms during the test dataset. All these storms are di-
vided into two groups, moderate storms with the mini-
mum of SMR-LT index between —50 nT and —100 nT,
and intense storms with the minimum of SMR-LT index
less than —100 nT. Negative values represent underesti-
mations of the storm intensity, while positive values rep-
resent overestimations. Note that, the storm intensities in
this subsection are discussed in absolute values. It is
clear that the relative errors tend to increase with the
lead time of predictions. Taking the predictions for
SMR-06 index during moderate storms, for example, the
relative errors are —10.99%, —13.73%, and —16.88% for
p = 1, 3,6 h. During moderate storms, the smallest rela-
tive error for p = 1 h is for SMR-12 index prediction,
—9.81%. For p = 3,6 h, the smallest relative errors are
—13.73% and —16.88%, both for SMR-06 index predic-
tion. In contrast, the relative errors for SMR-00 and
SMR-18 forecasts are relatively larger, as they tend to
have a larger magnitude of variation and are therefore
more difficult to predict accurately. In addition, the rela-
tive errors for intense storms are relatively less than
those for moderate storms.

Table 4 Magnetic storm intensity distribution

Moderate
Intense storms ~ Total
storms
Training set 119 72 191
Validation set 53 13 66
Test set 52 9 61
Total 224 94 318
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4  Summary

In this paper, we construct models for predicting partial
ring current index, SMR-LT, with an advance time from
1 h to 12 h via LSTM neural networks. Although the
Dst index is widely used to present the averaged mag-
netic disturbances on a global scale, the local time de-
pendence of geomagnetic disturbances during magnetic
storms indicates the importance of forecasting localized
magnetic storm indices, especially for studying the ef-
fects of magnetic storms on a particular region.

Using LSTM neural network, we construct predic-
tion models of partial ring current index, SMR-LT, with
an advance time from 1 h to 12 h for the first time. From
127 combinations of 7 solar wind parameters, the param-
P,,T,, B;, B,, performs best. The perfor-
mances of the SMR index prediction are comparable

eter space, E,,
with the results of the published models, which vali-
dates the reliability of our model when applying it to
predict the SMR-LT indices. Generally, the prediction
performance decreases with the advance time and is bet-
ter for SMR-06 than for SMR-00, SMR-12, and SMR-
18. For the prediction of SMR-00, SMR-06, SMR-12,
and SMR-18 with 12 h ahead, the correlation coefficient
is 0.608, 0.738, 0.665, and 0.613, respectively.

The evaluation of the model results shows that the
over-represented (over 66.26%) data during magnetic
quiet periods might affect the learning preference of the
ANN. To avoid the over-represented effect, we filter out
the data during magnetic quiet periods from the dataset
and train a new model, labeled as the “storm” model.
The performance improvement increases with the ad-
vance time. Taking the prediction of storm-time SMR-
06 index with a 12 h advance time, for example, the cor-
relation coefficient and the prediction efficiency increa-

Table S Relative errors (meantstandard deviation) of storm intensity predictions

Relative error / (%)

/h
P SMR-00 SMR-06 SMR-12 SMR-18
52 moderate storms 1 —24.98+7.18 -10.99+7.73 -9.81+£13.89 —12.49+12.10
3 -23.86+11.93 —13.73+13.84 —19.79+16.57 —24.42+14.52
—37.34+13.34 —16.88+14.66 —28.40+15.93 —32.85+13.80
9 intense storms 1 —11.8049.16 -9.9343.28 —8.76+9.73 —10.56+10.92
3 —13.04+13.28 —13.67+6.16 —23.19+14.57 —23.19+13.19
—31.10+13.58 —19.70+10.10 -34.66+12.02 -33.56+12.53
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ses from 0.674 to 0.691, and from 0.349 to 0.455, re-
spectively.

We also evaluate the model performance for fore-
casting storm intensity. The relative errors tend to in-
crease with the lead time of predictions. The relative er-
ror of storm intensity prediction for intense storms is

usually less than that for moderate storms.
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