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Abstract. In solar wind, dissipation of slow-mode magne-

tosonic waves may play a significant role in heating the so-

lar wind, and these modes contribute essentially to the solar

wind compressible turbulence. Most previous identifications

of slow waves utilized the characteristic negative correlation

between δ |B| and δρ. However, that criterion does not well

identify quasi-parallel slow waves, for which δ |B| is neg-

ligible compared to δρ. Here we present a new method of

identification, which will be used in 3-D compressible simu-

lation. It is based on two criteria: (1) that VpB0
(phase speed

projected along B0) is around ±cs, and that (2) there exists

a clear correlation of δv‖ and δρ. Our research demonstrates

that if vA > cs, slow waves possess correlation between δv‖
and δρ, with δρ/δv‖ ≈±ρ0/cs. This method helps us to dis-

tinguish slow-mode waves from fast and Alfvén waves, both

of which do not have this polarity relation. The criteria are

insensitive to the propagation angle θkB , defined as the an-

gle between wave vector k and B0; they can be applied with

a wide range of β if only vA > cs. In our numerical simula-

tion, we have identified four cases of slow wave trains with

this method. The slow wave trains seem to deform, probably

caused by interaction with other waves; as a result, fast or

Alfvén waves may be produced during the interaction and

seem to propagate bidirectionally away. Our identification

and analysis of the wave trains provide useful methods for

investigations of compressible turbulence in the solar wind

or in similar environments, and will thus deepen understand-

ings of slow waves in the turbulence.

Keywords. Interplanetary physics (MHD waves and turbu-

lence)

1 Introduction

The turbulent solar wind contains various magnetohydro-

dynamic (MHD) and kinetic waves (Tu and Marsch, 1995;

Goldstein et al., 1995; Bruno and Carbone, 2005; Marsch,

2006; He et al., 2011; Podesta and Gary, 2011; He et al.,

2012; Salem et al., 2012). Alfvén waves hardly dissipate, and

therefore this wave mode is observed ubiquitously (Belcher

and Davis, 1971; Wang et al., 2012). Fast magnetosonic

waves are compressible and are thus easily damped for a

plasma β of order unity. Moreover, their energy propagates in

divergent directions from the source, and therefore their wave

energy dilutes by spreading all around, making fast waves

more difficult to observe in the solar wind (Tu and Marsch,

1995). Though slow waves are compressible and thought to

be prone to damping, in the solar wind they tend to possess

k‖ small enough to avoid strong damping (Chen et al., 2012).

Moreover, their wave energy is mainly confined within mag-

netic flux tubes and transfers approximately along the mag-

netic field. Sequentially it is more likely to observe slow

waves. Kellogg and Horbury (2005) researched density os-

cillations and found a compressible mode of waves that may

be interpreted as slow waves. Howes et al. (2012) found neg-

ative correlations of δn and δB‖ in data from the Wind space-

craft, and suggested that the principal compressible compo-

nent of inertial range turbulence is the kinetic slow mode.

Yao et al. (2013) (Y13) reported MHD slow waves observed

with the Wind spacecraft. Their study described an event

with slow waves embedded in Alfvén fluctuations, where the

plasma β ≈ 1. These cases were identified using the criteria

given by Gary and Winske (1992), i.e., compressibility Cp
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and dimensionless cross-helicity σc. However, these criteria

require a wave train with a pure mode, and may fail when

waves of different modes mix up. Though cases reported by

Y13 did agree well with this requirement, the usability of

these criteria is limited. (Various linear spectral models (e.g.,

Klein et al., 2012) can be used for the problem.)

Recently simulations of these wave modes in MHD tur-

bulence have been carried out. Simulations of compress-

ible turbulence are especially important in that they promote

our understandings of wave features and wave–wave interac-

tions in the solar wind turbulence. To our knowledge, most

of them focus on the statistical properties of compressible

modes regarded as components of MHD turbulence. Most

relevant research and reviews – e.g., Cho et al. (2002), Cho

and Lazarian (2003, 2005), Vestuto et al. (2003), Brunt and

Mac Low (2004), Elmegreen and Scalo (2004), Zhou et al.

(2004), Hnat et al. (2005), Kowal et al. (2007), Shivamoggi

(2008), Kowal and Lazarian (2010), Tofflemire et al. (2011),

and Brandenburg and Lazarian (2013) – have concentrated

on spectral properties and/or anisotropy of different MHD

wave modes. Among these, Hnat et al. (2005), Shivamoggi

(2008), and Kowal and Lazarian (2010) focused on com-

pressible modes and investigated their characteristics. There

was also research investigating the correlations of quantities

in turbulences as well as dominating modes in of MHD tur-

bulences. Passot and Vazquez-Semadeni (2003) have found

that which wave mode dominates the contribution to density

fluctuations in turbulences is decided by θkB and Alfvénic

Mach numbersMA. WhenMA is low, the slow mode is more

dominant, especially when θkB is close to 90◦. Wisniewski

et al. (2013) researched the ratio of energy of different modes

as well as anisotropy. However, the local behaviors of MHD

waves are seldom discussed.

Among these, it is worth highlighting the works of Cho

et al. (2002) and Cho and Lazarian (2003, 2005). Those

studies mainly covered the anisotropy of MHD waves tur-

bulence spectra, but also extended their discussion to include

the generation of fast/slow waves in ambient Alfvénic fluc-

tuations. It was shown that fast/slow waves can be generated

in pure Alfvén wave background (explicitly reported by Cho

and Lazarian, 2005), but these articles did not include direct

identifications of the generated MHD waves. Instead, only

global, statistical parameters were extracted using a “projec-

tion” method. In order to “decompose” wave modes, com-

plex amplitudes δv(k) were projected on eigenvectors deter-

mined by the background magnetic field B0 and wave vector

k. The Alfvén mode has velocity oscillations in the B0×k di-

rection, while the fast mode oscillates quasi-perpendicularly

and slow mode the in quasi-parallel direction, both in the

plane in which both B0 and k lie.

In this article we intend to identify slow wave trains from

our simulations of MHD turbulences and describing their

evolution and possible interaction with other types of MHD

waves. Our goal differs from previous studies in that we pro-

vide direct and descriptive examples of slow waves, focusing

Figure 1. Density distribution (color) and in-plane velocities (ar-

rows) in the plane y = 3.14 at t = 0.71. As a reference, an arrow

is drawn to denote a velocity of 1 dimensionless unit. Between the

white lines is the slice used in analyses of the slow wave case 1.

on local behaviors and deformation of the associated wave

trains. Our criteria are insensitive to θkB and more versatile

than the correlation between δρ and δB‖.

In Sect. 2 we introduce our numerical model. In Sect. 3 we

give a brief prescription of the identification of MHD waves

and verify our new methods. In Sect. 4 we present our slow

wave cases and compare them with the case of Y13. Finally,

in Sect. 5 we summarize the results and present some discus-

sions.

2 Model description

In this section, we briefly introduce the codes that we used

in our compressible turbulence simulation. We have con-

ducted an MHD simulation with codes employing a splitting-

based finite-volume scheme (Feng et al., 2011; Zhang et al.,

2011; Yang et al., 2013), where the magnetic field is com-

puted with the constrained transport (CT) algorithm (Tóth,

2000) and the fluid part with a Gudonov-type central scheme

(Ziegler, 2004; Fuchs et al., 2009). The codes are based on

the PARAMESH package (MacNeice et al., 2000) and pro-

vide compressible solutions. (See Fig. 1.) The model is de-

fined in a three-dimensional rectangular coordinate system,

with 256×256×256 grid points along the x, y, and z direc-

tions, respectively. The corresponding computational region

ranges from 0 to 2π in each direction. The model describes

an ideal MHD system whose adiabatic index γ = 5/3, with-

out explicit kinetic or magnetic viscosity terms.

All data and analyses presented in this article make use

of a dimensionless unit system to simplify and clarify the

illustration of the method. However, in order to interpret

physical significances, a set of conversion factors should be

set. In the solar wind at 1 AU, the typical Alfvén speed is

about 100 km s−1, and we denote it as 2 dimensionless ve-

locity units. Hence the speed unit is v0 = 50 km s−1. Typi-

cal solar wind contains about 5 protons per cubic centime-
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ter, and so we assign the mass density unit to be ρ0 = 8×

10−21 kg m−3. Their combination gives a unit of magnetic

field B0 = 5.013 nT. Take a period of t0 = 20 s and the corre-

sponding length is L0 = 1 Mm.

A simulation of decaying turbulences is performed. As ini-

tial conditions, we adopt random “broadband initial condi-

tions” of Matthaeus et al. (1996). These initial conditions

consist of a randomly superposed wave packet of velocity

fluctuations u(k) with |u(k)|2 ∝ 1/(1+ (k/kknee)
q) in the k

range of 1< k < 8, where kknee is chosen to be 3. The param-

eter q decides the slope of the initial turbulence spectrum.

For oscillations we set
〈
v2
x

〉
= 0.5 and

〈
v2
y

〉
= 0.5, as well as

〈vx〉 =
〈
vy
〉
= 0. There are no oscillations of vz and B. We

uniformly set the mass density ρ0 = 1, temperature T0 = 0.6,

and magnetic field strength Bz0 = 2, Bx0 = By0 = 0 in initial

conditions, so that the initial Alfvén velocity (vA = B0/
√
ρ0,

in dimensionless unit system) is 2, and the speed of sound

(cs =
√
γp0/ρ0) is 1. Hence, the plasma β = 0.3 every-

where. These initial conditions intend to simulate the so-

lar wind with in situ compressible turbulence and represent

the local solar wind observations, yet they do not reflect ra-

dial expansion nor large-scale shear or stream interactions

(Matthaeus et al., 1996). Hence, the simulation is limited

to describing the local behaviors and cannot describe large-

scale phenomena, such as the radial evolution of solar wind

turbulence.

We employ periodic boundary conditions on all six bound-

aries, considering the two following issues. Firstly, there is

no rigid wall in the solar wind environment that our model

simulates. Secondly, periodic boundary conditions corre-

spond to wave modes propagating in an infinite space, so that

the wave vector k, which stems from Fourier analysis, makes

sense.

3 Wave mode diagnostics

In this section we present our methods to identify slow wave

trains in the simulation data. The identification is mainly ac-

complished with help of time–space slices along B0. We

show that the slow wave trains exhibit a strong correlation

between δρ and δv‖, and such correlated structures propa-

gate at a characteristic velocity. The theoretically predicted

ratio
∣∣δρ/δv‖∣∣ changes little with varying θkB , and thus the

determination of the wave vectors can be bypassed. Though

we fix on a single β in the test case, these criteria are quite

credible whenever vA is quite above cs.

In Sect. 3.1, we describe the methods to identify slow

waves, and we show the necessary features of other modes

as well. The identification mainly involves the dispersion re-

lation and polarity relations, where the angle θkB functions

as a kernel parameter, yet the results are insensitive to it.

In Sect. 3.2, we justify our method and check its robustness

and applicability. We use a randomly generated wave packet

to verify the correlation of δρ(t) and δv‖(t). The correla-

tion only depends on the sign of cosθkB , regardless of the

absolute value of cosθkB . The justification ensures that the

method is reliable and available for analysis of time series.

3.1 Identification and features of MHD waves

Firstly, it is worth revisiting theoretical solutions of MHD

waves, i.e., dispersion and polarity relations. These re-

sults are built on two hypotheses: (i) linearized oscillations,

i.e., fluctuations, are small enough that higher order terms

can be neglected, and (ii) there is only one monochromatic

plane wave of one mode. With these hypotheses one can de-

compose a physical quantity ψ into a constant “background”

part and an oscillating part:

ψ(x, t)= ψ0+Re

(
δψ̂ exp(i(k · x−ωt)),

)
(1)

where the background ψ0 and the complex amplitude δψ̂ are

constant. When only the oscillating part is discussed we will

simply use δψ̂ instead.

Single-fluid MHD equations can only support three modes

of waves: fast, slow, and Alfvén mode. If the speed of sound

cs, Alfvén speed vA, and θkB are given, the phase velocities

of fast and slow modes are determined according to

Vp,±(θkB)= (2)√√√√c2
s + v

2
A±

√
(c2

s + v
2
A)

2− 4c2
s v

2
Acos2θkB

2
,

where the plus sign is for fast waves and minus for slow

waves. The dispersion relation simply reads ω = Vpk.

For fast and slow mode, polarity relations in the form

given by, for example, Olbers and Richter (1973) and Marsch

(1986) are presented here (with some symbols altered and

unit system changed so that the permeability of free space

µ0 is 1):

δρ̂ = ερ0, (3a)

δv̂ = ε ·
Vp

V 2
p − v

2
Acos2θkB

(V 2
p k̂− v2

A cosθkBB̂), (3b)

δB̂ = ε ·
V 2

p vA

V 2
p − v

2
Acos2θkB

· (B̂ − cosθkB k̂)
√
ρ0, (3c)

where ε is the relative density fluctuation amplitude. Here it

is plausible to omit the expression of δp̂th from the solutions,

since it is merely a passive quantity directly related to δρ̂

(e.g., Zank and Matthaeus, 1993). From the form, it is worth

noting that both δv and δB lie in the plane defined by B0 and

k (e.g., take B0 = (0,0,B0) and k = (kx,0,kz), and the fluc-

tuations will lie in the x–z plane). In that plane the parallel

and perpendicular directions can be defined relative to B0.

From Eq. (3b) the parallel and perpendicular components of
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Figure 2. Theoretically predicted features of MHD waves. (a) Mag-

nitudes of wave phase speed along z direction
∣∣Vpz

∣∣ versus angle

θkB . (b) Compression due to fast and slow waves versus different

θkB , with vertical axis representing δρ̂/δv̂‖ for slow mode (red),

and δρ̂/δv̂⊥ for fast mode (blue). Both horizontal axes represent

θkB in degrees. Data are computed with vA = 2, cs = 1, and ρ0 = 1.

δv are

δv̂‖ = ε ·
Vp

V 2
p − cos2θkBv

2
A

(V 2
p − v

2
A)cosθkB , (4a)

δv̂⊥ = ε ·
Vp

V 2
p − cos2θkBv

2
A

·V 2
p sinθkB . (4b)

For an Alfvén wave, the dispersion relation reads

VpA =±vA cosθkB , (5)

where the plus sign corresponds to the case k‖ > 0, and vice

versa for the minus sign. The Alfvén wave has δρ̂ = δp̂ = 0.

Its velocity and magnetic field oscillate in k×B0 direction,

with

δv̂ =∓
δB̂
√
ρ0

, (6)

with the minus sign for k‖ > 0 and vice versa for k‖ < 0.

Let the phase velocity of the wave be Vp and the propa-

gation velocity of wave phase along B0 be Vpz. Then, since

V = ω/k,

Vpz =
ω

kz
=

ω

k cosθkB

=
Vp

cosθkB

. (7)
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B
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Figure 3. Polarity relations when vA = 2, cs = 1 and ρ0 = 1. (a) to

(d) show directions of velocity oscillations of fast and slow modes

with different θkB . (e) to (h) show directions of magnetic field os-

cillations of fast and slow modes. In each panel, the arrow length of

δB is scaled proportional to δv.

Since Vpz depends only on θkB instead of ω, Eq. (7) also ap-

plies for wave packets with all components sharing the same

θkB . For fast, slow, and Alfvén modes we plot Vpz versus

θkB in Fig. 2a. Along B0, Alfvén mode travels at a speed of

2, independent of θkB . For fast mode,
∣∣Vpz

∣∣ is greater than or

equal to 2, more approximated to 2 at smaller θkB . For slow

mode,
∣∣Vpz

∣∣ does not vary much from 1. As a result, slow-

mode structures stand out due to the distinguishing velocity

along B0, and the analysis of phase-propagating speed
∣∣Vpz

∣∣
still works for general wave packets.

Next we analyze characteristic velocity oscillations of fast

and slow waves. Since the wave energy density can be cal-

culated as ρ̄
〈
(δv)2

〉
, the amplitudes of δv can represent wave

energy. In our case vA = 2 and cs = 1, and from Eqs. (4a) and

(4b) the inequality
∣∣δv⊥/δv‖∣∣< 0.12 is valid, i.e., the oscil-

lations of slow waves keep within 7◦ (i.e., arctan 0.12) rela-

tive to B0 (see Fig. 3). Oscillations in parallel direction thus

contribute at least 98 % to the wave energy (because this per-

centage ρ0δv
2
‖
/(ρ0δv

2) can be written as 1/(1+ δv2
⊥
/δv2
‖
),

which is greater than 1/(1+ 0.122)≈ 0.986). For fast mode,

one can infer in the same fashion that the perpendicular di-

rection contains almost all of the wave energy. Therefore, it

is suitable to assign the parallel direction as the characteris-

tic direction of velocity oscillations of slow mode, and the

perpendicular one for the fast mode.

From Eqs. (3a), (4a) and (4b), one can derive that

δρ̂

δv̂‖
=
ρ0 · (V

2
− cos2θkBv

2
A)

V · (V 2− v2
A)

cosθkB , (8a)

δρ̂

δv̂⊥
=
ρ0 · (V

2
− cos2θkBv

2
A)

V 3 sinθkB

. (8b)

Considering the characteristic velocity oscillation above, we

take the former equation for the analysis of slow wave and

the latter of fast wave. Figure 2b clearly presents δρ̂/δv̂⊥
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of fast mode and δρ̂/δv̂‖ of slow mode. For slow mode, the

polarity of δρ̂/δv̂‖ depends on the signs of k‖, and the ra-

tio is not sensitive to θkB in each branch. In our case with

vA > cs, maximal compression per unit “characteristic os-

cillation” occurs when θkB = 0 or 180◦, where
∣∣δρ̂/δv̂‖∣∣=

ρ0/ |V (θkB = 0)| = ρ0/cs. The minimum occurs as θkB→

90◦, with
∣∣δρ̂/δv̂‖∣∣→ vAρ0/(cs

√
v2

A+ c
2
s ). The ratio of the

minimum to the maximum of
∣∣δρ̂/δv̂‖∣∣ is vA/

√
v2

A+ c
2
s (in

our case ≈ 0.894). If vA is much larger than cs, it is safe to

assume∣∣δρ̂/δv̂‖∣∣≈ ρ0

cs

. (9)

For fast mode, when θkB is near 0 or 180◦, there is no obvious

compression, but when θkB is close to 90◦, the ratio (Eq. 8b)

approaches ρ0/

√
v2

A+ c
2
s .

As above, the diagnosis of slow wave utilizes two criteria:

wave phase speed along B0 and δρ/δv‖. The criteria work

well in cases with vA > cs, yet better when the ratio vA/cs

is greater (i.e., with smaller β), where all the approximations

applied here will be slightly more precise. In order to em-

ploy them in data analysis, we must derive a relation between

δρ(t) and δv‖(t). In other words, we should further justify

that

δρ(t)

δv‖(t)
≈±

ρ0

cs

(10)

also holds well. The plus sign is for wave packets consisting

of slow wave with k‖ > 0, and the minus sign for k‖ < 0.

We also compute

σc(x, t)=
2 〈δv · δb〉

〈δv · δv〉+ 〈δb · δb〉
, (11a)

Cp(x, t)=

〈
(δρ)2

〉
ρ2

0

B2
0

〈δB · δB〉
. (11b)

The quantity δb = δB/
√
ρ0 denotes fluctuations of the mag-

netic fields, normalized to have velocity units. Gary and

Winske (1992) pointed out that σc and C distinguish wave

modes sharply: in our case, slow waves should have Cp� 1

and negative σc, Alfvén waves and “small-angled” fast waves

should have Cp ≈ 0 and σc near to −1, and “large-angled”

fast waves should have Cp < 1 and σc between −1 and 0

(see Table 1, from Table 1a of Gary and Winske, 1992).

These conclusions are for cases where k ·B0 > 0. For cases

where k ·B0 < 0, σc will change signs, and Cp will remain

unchanged. The computation of the two parameters is iden-

tical to that of Y13 (cf. Y13’s Eqs. 1 and 2).

In summary, MHD waves can be categorized into three

types: (i) slow waves, (ii) Alfvén waves and quasi-parallel

propagating fast waves (AW-like), and (iii) oblique and

quasi-perpendicular propagating fast waves (fast-like). With

vA = 2, cs = 1 and ρ0 = 1 (typical for β < 1), their behaviors

can be listed and compared in Table 1. For completeness, the

non-propagating entropy mode is also supplied. This mode

has inhomogeneity of density and temperature, but keeps

pressure, velocity and magnetic field strength all uniform.

Since quasi-parallel phase-propagating slow waves show lit-

tle δB, it may be problematic to analyze correlations between

δρ and δB‖ in such situations. However, since in the solar

wind compressible fluctuations have larger k⊥ than k‖ (Chen

et al., 2012), such quasi-parallel cases may be neglected.

3.2 Justification of methods

The criteria described in Sect. 3.1 are based on the hypothesis

that only a monochromatic wave of a given mode is involved.

This is hardly the case in reality, where turbulent fluctuations

have a wide range of frequencies and/or wave vectors, and

different kinds of modes may be superposed.

To check the performances of the criteria in complicated

cases, we have constructed a slow-mode wave packet to in-

vestigate the correlation of δρ and δv‖. The packet consists

of N wave modes, i.e., for δρ and δv‖

δv‖(x, t)=

N∑
i=1

v̂‖ i exp(i(ki · x−ωt)), (12a)

δρ(x, t)=

N∑
i=1

ρ̂i exp(i(ki · x−ωt)). (12b)

For each mode i, we generate complex amplitude v̂‖ i with

random moduli and initial phase. Each wave mode has a ran-

dom k, whose magnitude and direction are randomly decided

with only one restriction θkB < 89◦. This is intent to guaran-

tee that k‖ keeps the same sign in the wave packet. The cor-

responding ω is determined by k from dispersion relation.

Hence we can calculate ρ̂i from v̂‖ i with Eq. (8a), which de-

scribes the polarity relation between ρ̂ and v̂‖.

To test Eq. (10), we computed time profiles at the point

x = (0,0,0) of δv‖ and δρ. The parameters are taken as in

our initial condition: vA = 2, cs = 1, and ρ0 = 1, so we ex-

pect the ratio to be about 1. For each of N = 80 modes, am-

plitudes of δv‖i are randomly selected in the range from 0

to 1, initial phase from 0 to 2π , azimuthal angle of k⊥ (rel-

ative to B0) from 0 to 2π , and |k| from 0 to 2 in order to

implement the random superposition of wave modes and ex-

tend the range of frequencies. The plots of δv‖ and δρ almost

overlap in Fig. 4, which implies the ratio≈ 1. In this way the

method is justified.

If other modes coexist, the correlation between δρ and δv‖
may be (or not) destroyed, depending on the type of the coex-

isting wave. Fast and Alfvén waves do not have obvious δv‖.

As a result, observed δv‖ is contributed by slow waves. The

correlation is possibly affected when the coexisting mode is

either “large-angled” fast wave or slow wave propagating in

the opposite direction. At the same time, however, whenever

only Alfvén waves and/or parallel propagating fast waves co-

exist, the correlation will remain intact. To analyze mixed

www.ann-geophys.net/33/13/2015/ Ann. Geophys., 33, 13–23, 2015
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Table 1. Features of MHD waves.

(i) Slow (ii) AW-like (iii) Fast-like (iv) Entropy

δv ‖ ⊥ ⊥ 0

δρ ≈±1 ∼ 0 ∼ 1/2 arbitrary

(to δv‖) (to δv⊥) (to δv⊥)

|δB| ∼ 0 (k quasi ‖) ∼ 1 ∼ 1 0

∼ 1/2 (quasi ⊥)∣∣Vpz

∣∣ ≈ 1 ∼ 2 > 2 0

Cp � 1 ∼ 0 < 1 ∞

σc < 0 (k‖ > 0) ∼−1 −1 to 0 n/a

> 0 (k‖ < 0) ∼ 1 0 to 1
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Figure 4. Time profiles of δv‖(t) and δρ(t) of a composed wave

packet containing slow waves with random amplitudes, random

wave vectors (k‖ > 0), and random initial phase. The vertical axis is

for oscillating quantities, and the horizontal axis represents time t .

wave forms, linear spectral models (e.g., Klein et al., 2012)

may be used along the methods presented above to separate

different modes with help from eigenmode solutions.

4 Results

In this section we analyze the data from compressible simu-

lations with the methods above and diagnose possible slow

wave cases, four of which are presented with one in detail

and the others in brief.

The data are extracted in time–space slices with coordi-

nates x and y fixed, so that the slices lie in the z direction.

The primary characteristics of the cases are listed in the Ta-

ble 2. Propagating speeds are computed by fitting the track

of phase in the (z, t) diagram. Averaged values and oscilla-

tions are evaluated with “wave points” (defined in the next

paragraph).

For case 1 (see the white lines in Fig. 1), profiles of char-

acteristic quantities are plotted in Fig. 5. Red squares in

panel a track the slow wave train. The points tracked are

Figure 5. Temporal evolution of quantities near propagating region

of slow wave case 1. (a) Temporal profiles of density ρ, with slow

wave train displayed. (b) Temporal profiles of z component of ve-

locity vz, with the same (z, t) points as shown in (a). (c) Tempo-

ral profiles of dvx/dz, with two secondary wave trains displayed.

(d) Distribution of δvz and δρ at points near the slow wave train dis-

played in (a). In (a) to (c) the horizontal axis represents coordinate

z in the slice. The vertical axis marks the times of corresponding

profiles. The colors plot the corresponding physical quantities. In

(d) the blue line plots δρ/δvz = 1 as a reference; colors of mark-

ers show their time, with red ones earlier and green ones later. The

fluctuation values are obtained by subtraction of the average of the

quantities at these points.

maxima of density ρ. Panel b plots a z–t profile of vz with

the same tracked points marked. Since slow waves usually

appear shortly in turbulences, their widths are confined so

that we can analyze the region near to the marked points.

For each time t with the wave peak marked at z= zp(t),

we take the points where zp− 0.2≤ z < zp+ 0.2 and de-

fine them as “wave points”. An estimation of background

quantities can be obtained from the average of all wave

points through the time span, giving B̄ ≈ (−0.1,−0.5,2.0)

and v̄ ≈ (−0.4,−0.3,0.04) in (x,y,z) coordinates. The an-

gle between B̄ and z axis is only 14◦. In our qualitative analy-

Ann. Geophys., 33, 13–23, 2015 www.ann-geophys.net/33/13/2015/



L. Zhang et al.: Slow MHD wave trains in 3-D compressible simulation 19

Table 2. Overview of the cases analyzed.

Case x y z t Propagating ρ̄
〈
(δvz)

2
〉

Ēslow Correlation

speed along z r(δvz,δρ)

1 4.1 3.14 2.0 to 2.4 0.55 to 0.85 1.04± 0.049 1.06 0.18 0.032 0.91

2L 1.6 3.14 4.2 to 3.4 0.65 to 1.37 −1.04± 0.014 0.91 0.31 0.087 −0.86

2R 1.6 3.14 5.2 to 3.8 0.65 to 1.85 −1.11± 0.011 0.95 0.29 0.078 −0.78

3 5.0 3.14 3.1 to 2.7 0.49 to 0.71 −0.84± 0.057 1.18 0.17 0.034 −0.91

4 3.1 3.14 5.1 to 5.2 0.37 to 0.55 0.92± 0.081 1.10 0.20 0.049 0.94

sis it is reasonable to approximate the z direction as the paral-

lel direction. The background velocity v̄z is not large enough

to force the subtraction of this velocity from the wave speed

along the z slice. Meanwhile, ρ̄ and Bz change little from

the initial condition, and thus the initial values are still valid

as background values. The root-mean-square value of δvz is

about 0.2, and δρ ≈ 0.2. This confirms to the polarity rela-

tions, and the root-mean-square values show that the wave

train is linear in amplitude.

Panels a and b exhibit characteristic properties of a slow

wave train: (1) an obvious density change (∼ 20 %), (2) typ-

ical propagating velocity (1.04± 0.049) around cs = 1, and

(3) good correlation between fluctuations of ρ and v‖ (corre-

lation coefficient= 0.91).

Equation (10) serves as another important criterion for

slow-mode waves. To check against it, we have analyzed the

correlation between δvz and δρ (Fig. 5d). As a reference, a

blue line is plotted corresponding to δρ/δv‖ = 1. The points

gather around the blue line, highlighting a typical strong cor-

relation for slow waves. From the distribution the averages

and oscillations are also calculated, so the averaged wave

energy density can be calculated as Ēw = ρ̄
〈
(δvz)

2
〉
, and is

listed in Table 2.

To explain Y13’s observation, we further compute some

features employed in Y13’s analysis. We take points where

0≤ z < 4.2 on the slice at t = 0.71. The running smooth

window used to compute Cp and σc has a width of 0.5, cho-

sen as about a typical scale of the wave (see Fig. 5a). The

results are presented in Fig. 6, where panels a and b are plot-

ted without smoothing. Panel b shows the correlation of vx
and Bx as the result of searching for possible Alfvénic struc-

tures. Since the x direction can be interpreted as a perpendic-

ular direction, the Alfvén mode or small-angled fast mode

both have δv⊥ ≈∓δB⊥/
√
ρ̄ (in the case of Alfvén waves,

the equal sign holds strictly). In the segment marked with

blue vertical lines in Fig. 6b, a negative correlation between

Bx and vx can be seen, and the amplitudes of their change

are almost equal. In the same plot, the segment z ≤ 1 shows

almost overlapping profiles of Bx and vx . The two evidences

may suggest an Alfvénic background. In this way, an Alfvén

or small-angled fast-mode background is expected. For com-

parison with Gary and Winske (1992), panels c and d give

parameters of the wave train. The wave points show C� 1

Figure 6. Features of points near density maximum in case 1, at

t = 0.71. (a) Instant values of thermal pressure pth = ρT (black)

and magnetic pressure pB = B
2/2 (green). (b) Instant values of

perpendicular components of velocity vx (black) and magnetic field

Bx (green). (c) Compressibility C computed with Eq. (11b). (d) Di-

mensionless cross-helicity σc computed with Eq. (11a). Horizontal

axes represent the z coordinate along the slice, which is taken at

x = 4.10, y = 3.14, and 0≤ z < 4.2. In (a) and (b), both vertical

axes are adjusted so that they share the same scale. Red lines mark

“wave points”, and the vertical blue lines mark a region of negative

correlation of vx and Bx .

and σc ≈−0.5, which agrees well with the criteria. Therefore

the slow-mode wave train is again identified.

Thus we identified a slow wave train embedded in

Alfvénic-like structures, which explains Y13’s observation.

However, the wave train does not propagate forever. This is

also described in Fig. 5a and b. At t = 0.87, the density peak

in panel a becomes hardly recognizable and starts to blur. At

the same moment, the vz structure in panel b does not propa-

gate any further. The slow wave train seems to be deformed.

In Fig. 5a, a fan-like structure appears, hinting at a possible

generation of at least two waves and propagation in oppo-
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Figure 7. Temporal evolution of quantities along the x slice in case 1, taken to intersect the z slice in Fig. 5. (a) Temporal profiles of vx ,

with two wave trains displayed. (b) Temporal profiles of Bx . (c) Temporal profiles of ρ. (d) Distribution of δρ and δvx at points near the

blue (left) wave train. (e) Distribution of δBy (profile not plotted) and δvx at points near the blue wave train. (f) Distribution of δBx and δvx
at points near the cyan (right) wave train. In (d) to (f), the points are selected as ones within 0.1 unit length to the tracked points. Redder

markers stand for earlier time points and greener for later.

site directions. To check them, we plot dvx/dz in panel c and

marked in both wave trains in blue and cyan squares at lo-

cal minima of the profile, respectively. These waves have the

speed of fast waves, and moreover they cause density change.

They are possibly “large-angled” fast waves.

To understand what happens to the wave train when it de-

forms, we take another slice along the x axis at the same time

interval and with z= 2.3 and y = 3.14, so that it passes the

site where the slow wave train begins to deform. We plot the

corresponding profiles in Fig. 7, with maxima of |∂vx/∂x|

tracked, and we have them marked in panels a to c. The series

of the maxima can be regarded as wave trains. The blue wave

train exhibits some density fluctuations (see panel c), which

are much smaller than in slow mode. To understand its wave

mode, we perform two fits (see panels d and e). Its behaviors

resemble fast waves with θkB ∼ 40◦ (cf. Figs. 2a and 3). For

the cyan wave train, the oscillations of Bx and vx are similar

(see panel b). A scatterplot of Bx and vx near the cyan train

is provided in panel f, displaying a positive correlation. The

two trains are not slow waves, the blue one behaves “fast-

like”, and the cyan one behaves somehow “Alfvén-like”. It is

notable that they meet at z≈ 4.1 and t = 0.87, the very point

where the slow wave train deforms.

Hence, the deforming of the slow wave train in case 1 can

be described in such a scenario: a slow wave train interacts

with at least two non-slow counterparts (one of them prob-

ably being “large-angled” fast waves), and deforms into at

least two non-slow ones.

For other cases, only overviews of the slow wave trains are

presented. In case 2 (Fig. 8), two slow wave trains propagate

together. However, no clear wave form between the peaks

is revealed. In contrast to case 1, the two wave trains re-

main quite a long time, especially for the wave train at larger

z (case 2R). Moreover, waves in case 2 propagate “down-

Figure 8. Features of slow wave case 2. In (a), the orange markers

show case 2L and the red ones case 2R.

wards” to smaller z, while the counterpart in case 1 propa-

gates “upwards” to larger z. Accordingly, δρ and δv‖ show

negative correlation in case 2. Case 3 is a rather short case,

whose profiles are shown in Fig. 9. Because we take fewer

points along the wave train, the correlation coefficient r ap-

pears larger than that of cases 1 and 2. Before the slow wave

train is formed, a fast wave train exists (see the cyan markers

in panel c). At t ∼ 0.47, it seems to bifurcate, with most of

its energy being transferred into the slow-mode train. A mi-

nor part continues propagating as fast or Alfvén mode, which

is barely detectable in panel c after t = 0.47. This scenario

resembles the one discussed by Kudoh and Shibata (1999).

After t = 0.67, the slow wave train appears to excite another

sharp wave train (panel c). However, the slow wave train does

not fully deform. Case 4 is also a rather short case with pro-
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Figure 9. Features of slow wave case 3, in the same format as Fig. 5.

files shown in Fig. 10. The excited wave is so weak that it

can barely be detected (see panel c). However, the energy of

the deformed slow wave train may be contributed to the com-

plicated velocity structure shown at the top of Fig. 10b. In all

cases, the slow wave trains seem to be destroyed as they inter-

act with other modes at the same point. After the destruction,

new wave trains might be formed and shape “fan-like” struc-

tures shown in time–space slices of density. Such structures

are best shown in case 1, but still detectable in cases 2 to 4

(cf. Figs. 8a, 9a, and 10a).

5 Summary and discussions

This article establishes criteria to identify slow wave trains in

MHD simulation data, and presents four cases of such slow

wave trains. Several of their physical properties are extracted.

The main results are summarized here.

1. The identification of slow wave trains is achieved by

studying data along a slice approximately aligned to the

background magnetic field. Typical slow wave behav-

iors include
∣∣Vpz

∣∣≈±cs and quite strong correlation of

δρ and δv‖, with their ratio ∼±ρ0/cs. They are consis-

tent with the derivation from dispersion and polarity re-

lations of linear MHD oscillations. These properties are

dominated only by the sign of cosθkB and insensitive to

its absolute value, allowing us to bypass the calculation

of wave vector k. The criteria are theoretically reliable

if vA is well above cs, and they have passed a test with

randomly generated wave packets.

2. Four cases of linear slow wave train are analyzed. They

comply well with the criteria. For case 1, the parameters

σc and Cp are computed, and they support the identifi-

cation.

Figure 10. Features of slow wave case 4, in the same format as

Fig. 5. In (a) and (b), tracked points are maxima of |∂ρ/∂z|.

3. Near the slow wave train of case 1, an Alfvénic structure

exists. This explains Y13’s observation as a local slow

wave train generated in an Alfvénic environment, ex-

cept that the existence of a pressure-balanced structure

cannot be clearly confirmed.

4. Such slow wave trains are inclined to dissolve. They de-

form suddenly, probably when they interact with other

waves, and their density structures will expand so that

they dissolve like a fan in time–space slice plots. The

boundary of the fan propagates at a typical speed of fast

wave, and the plasma there shares properties of the fast

wave or Alfvén wave. This is clearly shown by case 1,

but in other cases the fan-like density structures are also

detectable (though barely).

We have computed the wave energy density of the four

wave trains, and found that the wave energy densities are

about 0.03 to 0.04 except in case 2. All points in the com-

putational region at t = 0.71 give ρ0

〈
(δv)2

〉
≈ 0.39. Since

the zones of compressible modes occupy a small portion of

the computational region, and energy densities of slow wave

trains are much smaller than the background fluctuations, it is

reasonable to roughly estimate the energy density of Alfvén

mode as 0.4. Since all four cases appear at time spans near

t = 0.71, this background energy density applies to all cases

in a rough estimation. Therefore, the typical wave energy

density of slow wave trains amounts about 0.1 in all fluc-

tuations. (For case 2, this proportion might be 0.2.)

There are certain limitations in this work. Firstly, this re-

search is limited within MHD descriptions. Kinetic mag-

netosonic waves behave differently from MHD eigenmodes

(Klein et al., 2012). Therefore, kinetic effects (not included

in our MHD investigation) may limit applications of the re-

ported MHD methods to solar wind observations. Slow mode

waves generally suffer more damping than Alfvén waves do.
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Damping rates of slow modes vary with θkB , with the quasi-

perpendicular ones less damped (Barnes, 1966; Schekochi-

hin et al., 2009). In the solar wind, the compressive fluctu-

ations are found to be anisotropic with k⊥ larger than k‖,

based on the structure function analysis (Chen et al., 2012).

This explains why slow-mode fluctuations exist in the solar

wind even though they suffer some damping. Nevertheless,

our MHD model is limited in that it does not cover slow wave

damping. Secondly, this work mainly focuses on phenome-

nal features of slow waves. However, their genesis has not yet

been discussed, because our initial condition is a rather com-

plex one and we need a method to trace the development of

wave trains. With such a method, it would be possible to per-

form further investigations, such as analysis of fan structures

in density profile, mechanisms of wave interactions, and re-

lations between such wave trains and structures (e.g., discon-

tinuities or intermittencies), Thirdly, though in principle our

numerical simulation is able to produce a time series of 3-

D data, we are forced to select only the essential informa-

tion for the analysis because of the formidable computational

cost when high-resolution (x,y,z, t) data are produced and

analyzed. Local analysis of such wave trains, which utilizes

information about the three-dimensional and temporal evo-

lution at local space-time points, may be conducted in future

research. The analyses presented in this article employ slices

and thus provide a workable compromise. Nevertheless, this

research has to bypass some aspects such as determination of

wave vectors, which may be essential for further analysis.
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