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Shen et al. [1,2] proposed an upwind space-time conservation element and solution ele-
ment (CESE) scheme for 1D and 2D hydrodynamics (HD) in rectangular coordinates, which 
combined the advantages of CESE and upwind scheme, namely, guaranteed strictly the 
space–time conservation law as well as captured discontinuities very efficiently. All kinds 
of upwind schemes can be combined very flexibly for different problems to achieve the 
perfect combination of CESE and finite volume method (FVM). However, in many phys-
ical applications, we need to consider geometries that are more sophisticated. Hence, 
the main objective of this paper is to extend the upwind CESE scheme to multidimen-
sional magneto-hydrodynamics (MHD) in general curvilinear coordinates by transforming 
the MHD equations from the physical domain (general curvilinear coordinates) to the com-
putational domain (rectangular coordinates) and the new equations in the computational 
domain can be still written in the conservation form. For the 3D case, the derivations of 
some formulas are much more abstract and complex in a 4D Euclidean hyperspace, and 
some technical problems need to be solved in the debugging process. Unlike in HD, keep-
ing the magnetic field divergence-free for MHD problems is also a challenge especially in 
general curvilinear coordinates. These are the main obstacles we have overcome in this 
study. The test results of benchmarks demonstrate that we have successfully extended the 
upwind CESE scheme to general curvilinear coordinates for both 2D and 3D MHD problems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Some complex flow phenomena such as shock and other discontinuities as well as shear layers are often met with for 
HD and MHD problems. Many researchers have tried their best to design schemes which can maximize accuracy and robust-
ness in dealing with complex flow problems. Upwind schemes are most popular in dealing with discontinuous problems, 
and these can be split into three groups [3,4]: flux vector splitting (FVS), flux difference splitting (FDS) and CUSP family 
(including AUSM [5,6], CUSP [7–11], LDFSS [12], AUFS [13]). In fact, CUSP family are special FVS schemes. The usually used 
FVS schemes mainly include three types for HD [4]: Steger–Warming [14], Lax–Friedrichs [15], and Van-Leer [16] splitting. 
MacCormack [17] developed an FVS method for MHD to overcome the challenge of inhomogeneous coefficient matrices of 
MHD equations. The usually used FDS schemes mainly include HLL [18–21], HLLC [20,22–25], HLLD [26,27], Roe [23,28,29]
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and one TVD scheme proposed by Balsara [30] which is based on a linearized formulation of the Riemann problem [31,32]. 
Later, some new hybrid schemes were developed, combining two or more isolated schemes to obtain a better scheme than 
just using any one of these schemes. Up to now, we have known mainly three types of hybrid schemes: Hybrid flux-splitting 
schemes [33–38]; PISO + AUSM [39,40]; Rotated Riemann solver [41–43]. The hybrid flux-splitting schemes are those trying 
to combine the accuracy of FDS and the robustness of FVS in dealing with problems including discontinuities. The basic idea 
of hybrid flux-splitting scheme is to first split the flux by FVS, and then for each split parts use an appropriate FDS scheme. 
PISO + AUSM is a scheme in which after splitting the flux by AUSM, the PISO cycle method is used to predict and correct 
the states variables. Rotated Riemann solvers split the local normal vectors at each solution point into two normal vectors. 
Then, they treat the direction with discontinuities by using a highly diffusive scheme. The other direction, which is more 
continuous, is treated with a lower diffusion scheme to get a more accurate solution in the smooth direction. The aim is to 
get a more accurate and robust scheme to handle the problems of discontinuities.

The CESE scheme was first proposed by Chang [44], to be developed for and applied to HD successfully. The main 
characteristic of the CESE scheme is that it deals with space and time as one entity when discretizing conservation equations 
which can strongly guarantee the space-time conservation law. Besides, it also has some other attractive advantages over 
the FVM [45]. But it didn’t consider the eigen-structures [2]. We have found from the tests that: for the original CESE 
scheme, though some artificial dissipation had been embedded into the scheme in the process of derivation of first-order 
derivative, some discontinuous surfaces have been smeared out more or less. By analyzing Fourier stability and accuracy 
properties, Huynh [46] pointed out that upwind scheme is more accurate than the original CESE scheme on quadrilateral 
meshes. To combine the advantages of the CESE scheme and upwind scheme together, Shen et al. [1,2] proposed an upwind 
CESE scheme for 1D and 2D HD on rectangular grids, which can capture discontinuities very well.

Some practical MHD problems such as solar-terrestrial physics problems, the sun’s and earth’s geometry (spherical 
shaped) will need spherical coordinates. Shocks and other discontinuities, such as contact discontinuity, tangential dis-
continuity, rotational discontinuity are often encountered in many space physics events. These problems motivate us to 
study and construct an upwind CESE scheme in general curvilinear coordinates by transforming the MHD equations from 
the physical domain (general curvilinear coordinates) to the computational domain (rectangular coordinates) which won’t 
change the conservation property of governing equations [47,48].

The remainder of this paper is organized as follows. The MHD governing equations are presented in Section 2. Section 3
presents the construction of the 2D and 3D upwind CESE scheme in rectangular coordinates and general curvilinear coor-
dinates, respectively. Section 4 gives a method to clean magnetic field divergence by using the least-squares method. Some 
standard benchmarks are used in Section 5 to check the effectiveness of this upwind scheme for the 2D and 3D MHD 
problems in both rectangular coordinates and general curvilinear coordinates. Section 6 presents the conclusions.

2. MHD governing equations

The ideal MHD equations in conservative form in physical domain are as follows:

∂U

∂t
+ ∇ · F̂ = 0, (1)

where U = (um) = (ρ, ρvx, ρv y, ρvz, E, Bx, B y, Bz)
T is the state vector of conservative variables and m = 1, . . . , 8. t, γ , ρ, E , 

V = (vx, v y, vz) and B = (Bx, B y, Bz) denote time, the ratio of specific heats, the mass density, total energy, plasma velocity 
and magnetic field, respectively.

p = (γ − 1)(E − V·V
2 − B·B

2 ) is the gas pressure and p0 = p + B·B
2 is the total pressure. F̂ denotes the flux vector, which 

equals F, (F, G) and (F, G, H) for 1, 2 and 3 dimensions, respectively. And

F = ( fm) = [
ρvx,ρv2x + p0 − B2

x ,ρvxv y − BxB y,ρvxvz − BxBz, (E + p)vx − Bx(V · B),0, vxB y

− v y Bx, vxBz − vzBx
]T

,

G = (gm) = [
ρv y,ρv y vx − B y Bx,ρv2y + p0 − B2

y,ρv y vz − B y Bz, (E + p)v y − B y(V · B), v y Bx

− vxB y,0, v y Bz − vzB y
]T

,

H = (hm) = [
ρvz,ρvzvx − BzBx,ρvzv y − BzB y,ρv2z + p0 − B2

z , (E + p)vz − Bz(V · B), vzBx

− vxBz, vzB y − v y Bz,0
]T

.

3. Construction of upwind CESE scheme

3.1. Upwind CESE scheme in rectangular coordinates for the 2D case

In the generalized 3D Euclidean space E2+1(x, y, t), which combines the spatial coordinates with time t , Eq. (1) can be 
rewritten as follows:
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Fig. 1. (a) spatial meshes; (b) definition of CE and SE; (c) one CE split into four sub-CEs; (d) corresponding fluxes in the upwind CESE scheme on rectangular 
meshes.

∇ · hm = 0, (2)

where hm = ( fm, gm, um), (m = 1, . . . , 8) is the space-time flux vector. By applying Gauss’s divergence theorem into Eq. (2)
in the 3D space-time domain E2+1(x, y, t), we obtain∮

S(V )

hm · ds = 0, (3)

where S(V ) is the boundary of any closed space-time region V in E2+1(x, y, t).
ds = (dδ)n, dδ and n are the area and unit outward normal vector of a surface element on S(V ), respectively. hm · ds

denotes the total space-time flux leaving the surface element ds.
As Fig. 1(a) shows, the space-time domain is discretized by a uniform mesh in rectangular coordinates. V i denotes the 

i-th vertex point, and Ai denotes the i-th mid-point of the element edge. As reported earlier [49], for quadrilateral cells, 
each cell is associated with four basic conservation elements (BCEs), which constitute a compound CE (CCE). In Fig. 1(a), 
V1V5V7V9 is the projection of one CCE, and the projections of four BCEs related to it are (V1V2V3V4), (V3V4V5V6), 
(V6V7V8V3) and (V8V3V2V9). Ci is the centroid of the i-th BCE. G is the centroid of CCE. Ci and G are also the solution 
points of the BCEs and CCE, respectively.

Uniformity of the meshes makes the centroids coincide with the centers of quadrilaterals. The final solution point G
coincides with the vertex point V3.

There are mainly two kinds of CESE schemes: non-staggered and staggered [2]. In this study, we use the staggered one, 
mainly because it can save memory and reduce computational cost. In a full time step, during the first half time step, the 
solution is updated from the vertices marked by hollow circles to the respective cell centers marked by crosses in Fig. 1(a). 
During the second half time step, the solution is updated from the cell centers to the vertices.

To be more specific, for a cell point, we first update the solution of its four BCEs, namely Ci , during the first half time 
step. Following which the values of Ci are used to update the solution of the CCE, namely G , during the second half time 
step.

For each set of solution points Ci and G , we define a conservation element (CE) and a corresponding solution element 
(SE). For the upwind CESE scheme, the CE is the same as in the original CESE scheme but the SE is different from the original 
one. Below, we take the point C∗ as an example. As Fig. 1(b) shows, CE (C∗) is the hexahedron V1V2V3V4V ∗V ∗V ∗V ∗; in 
1 1 1 2 3 4
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the original CESE scheme, its corresponding SE(C∗
1) is the union of three planes V ∗

1 V
∗
2 V

∗
3 V

∗
4 , A1A3A∗∗

3 A∗∗
1 and A2A4A∗∗

4 A∗∗
2 , 

which are orthogonal to each other and intersect at C∗
1 . In the upwind CESE scheme, corresponding SE (C∗

1) is the union of 
planes A1A3A∗

3A
∗
1, A2A4A∗

4A
∗
2 and hexahedron V ∗

1 V
∗
2 V

∗
3 V

∗
4 V

∗∗
1 V ∗∗

2 V ∗∗
3 V ∗∗

4 . Let Ψ , Ψ ∗ and Ψ ∗∗ denote any point at n − 1/2
time level, n time level and n + 1/2 time level, where n is the index for time.

As the conservation law, i.e., Eq. (3), is suitable for an arbitrary closed space-time domain, the CE we constructed in 
Fig. 1(b) will facilitate the derivation of the discrete form of Eq. (3). All the boundaries of the CEs are parallel to the 
coordinate surfaces, and the normal direction is along the coordinate axis; therefore, on any boundary surface of CEs, 
there is only one component of the total space-time fluxes, which makes the integration of space-time fluxes much more 
convenient.

Inside SE(Ψ ) of any point Ψ , all the space-time fluxes um , fm and gm are approximated by Taylor expansion at point Ψ . 
Each CE can be split into four sub-CEs; for example, CE (C1) can be split into CE1, CE2, CE3 and CE4 as shown in Fig. 1(c). 
Imposing conservation law, i.e., Eq. (3), on each sub-CE, we get

U∗
1

(
C∗
1

)�x�y

4
=

[
um

(
C∗
1

) − umx
(
C∗
1

)�x

4
− umy

(
C∗
1

)�y

4

]
�x�y

4

= U1
�x�y

4
+ (F1 − F1C )

�y�t

4
+ (G1 − G1C )

�x�t

4
, (4)

U∗
2

(
C∗
1

)�x�y

4
=

[
um

(
C∗
1

) + umx
(
C∗
1

)�x

4
− umy

(
C∗
1

)�y

4

]
�x�y

4

= U2
�x�y

4
+ (F1C − F2)

�y�t

4
+ (G2 − G2C )

�x�t

4
, (5)

U∗
3

(
C∗
1

)�x�y

4
=

[
um

(
C∗
1

) + umx
(
C∗
1

)�x

4
+ umy

(
C∗
1

)�y

4

]
�x�y

4

= U3
�x�y

4
+ (F2C − F3)

�y�t

4
+ (G2C − G3)

�x�t

4
, (6)

U∗
4

(
C∗
1

)�x�y

4
=

[
um

(
C∗
1

) − umx
(
C∗
1

)�x

4
+ umy

(
C∗
1

)�y

4

]
�x�y

4

= U4
�x�y

4
+ (F4 − F2C )

�y�t

4
+ (G1C − G4)

�x�t

4
, (7)

where Ui and Fi , Gi represent the conservative variables and original interface fluxes of sub-CEs which can be obtained by 
Taylor expansion from the point Vi . FjC and GjC denote the newly adding upwind interface fluxes as shown in Fig. 1(d), 
which can be obtained by solving Riemann solver and any upwind schemes can be used.

Ui = um(Vi) + kx�x

4
umx(Vi) + ky�y

4
umy(Vi), (8)

Fi = fm(Vi) + ky�y

4
fmy(Vi) + �t

4
fmt(Vi), (9)

Gi = gm(Vi) + kx�x

4
gmx(Vi) + �t

4
gmt(Vi), (10)

Fjc/Gjc = Φ
(
un−1/4
mL ,un−1/4

mR

)
, (11)

where kx , ky is −1 or 1, as determined by the position of the four solution points V1, V2, V3, V4 relative to the center 
point C1, and they are (−1, −1), (1, −1), (1, 1), (−1, 1), respectively. We used the chain rule to obtain fmt(Vi) and gmt(Vi), 
for example, fmt(Vi) = ∂ fm(Vi)

∂t = ∑8
p=1

∂ fm(Vi)
∂up(Vi)

upt(Vi), where upt(Vi) = − fpx(Vi) − gpy(Vi) which was obtained according to 

the conservation law expressed by Eq. (1). Φ(un−1/4
mL , un−1/4

mR ) can be obtained by any upwind scheme, such as HLL, HLLC, 
HLLD, Roe or some hybrid FVS and FDS schemes.

Adding Eqs. (4)–(7) together, we obtain

um
(
C∗
1

) = 1

4
(U1 + U2 + U3 + U4) + �t

4�x
(F1 − F2 − F3 + F4) + �t

4�y
(G1 + G2 − G3 − G4). (12)

Subtracting Eq. (4) from Eq. (5) and subtracting Eq. (7) from Eq. (6), we obtain two groups of umx

umx
(
C∗
1

) = 2

�x

[
(U2 − U1) + �t

�x
(2F1C − F1 − F2) + �t

�y
(G2 − G1 + G1C − G2C )

]
, (13)

umx
(
C∗
1

) = 2
[
(U3 − U4) + �t

(2F2C − F3 − F4) + �t
(G4 − G3 + G2C − G1C )

]
. (14)
�x �x �y
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Subtracting Eq. (4) from Eq. (7) and subtracting Eq. (5) from Eq. (6), we obtain two groups of umy

umy
(
C∗
1

) = 2

�y

[
(U3 − U2) + �t

�x
(F2 − F3 + F2C − F1C ) + �t

�y
(2G2C − G2 − G3)

]
, (15)

umy
(
C∗
1

) = 2

�y

[
(U4 − U1) + �t

�x
(F4 − F1 + F1C − F2C ) + �t

�y
(2G1C − G1 − G4)

]
. (16)

Then, by directly using the arithmetic average or by using a weighted average function [50,51], the final values of umx and 
umy can be obtained for the HD problems. However, for the MHD, to control the magnetic field divergence-free, we will use 
least-squares method to obtain the first-order derivatives of Bx , B y and Bz which will be discussed in Section 4.

In fact, you can find that Eq. (12) is the same as the original CESE scheme in the process of updating um . The center 
interface upwind fluxes only play a part in updating the first-order derivatives of the conservative variables.

3.2. Upwind CESE scheme in general curvilinear coordinates for the 2D case

By using a nonsingular mapping x = x(ξ, η); y = y(ξ, η), Eq. (1) can be transformed from the physical domain (x, y) to 

a computational domain (ξ, η). J = ∂(x,y)
∂(ξ,η)

=
(

xξ xη
yξ yη

)
is the Jacobian matrix and its components are called metrics which 

can be calculated numerically or analytically. The inverse matrix of the Jacobian matrix is J−1 = ∂(ξ,η)
∂(x,y) =

(
ξx ξy
ηx ηy

)
. Here, 

we use the mapping x = eξ cosη, y = eξ sinη. Thus, the Jacobian matrix can be obtained analytically. In the following text, 
if there is no special explanation, all the quantities in computational domain will be labeled by “∼”.

After transformation, the 2D ideal MHD equations in computational domain are as follows:

∂Ũ

∂t
+ ∂ F̃

∂ξ
+ ∂G̃

∂η
= 0, (17)

where

Ũ = JU,

F̃ = JξxF+ JξyG, (18)

G̃ = JηxF+ JηyG,

and J is the determinant of the Jacobian.
Vinokur [47] and Viviand [48] reported that using transformation wouldn’t change the conservation property of equa-

tions, so the conservation law is satisfied in the computational domain. Eq. (17) can be rewritten in conservative form 
as:

∇ · h̃ = 0, (19)

where h̃ = (̃F, ̃G, ̃U).
In the 3D Euclidean space E2+1(ξ, η, t), by applying Gauss’s divergence theorem into Eq. (17), we obtain∮

S(V )

h̃ · ds = 0. (20)

As Fig. 3(b) shows, in the computational domain, they are rectangular grids, so the method in Section 3.1 can be built 
in the computational domain in a similar manner. We should note that, in the computational domain, the independent 
marching variables are Ũ, ̃Uξ , ̃Uη . When using Taylor expansions for flux vectors, we also need to get the derivatives of flux 
vectors in the computational domain. By taking the derivative of Eq. (18) with respect to ξ or η, we obtain the relationships 
of conservative variables and flux vectors as well as their corresponding spatial derivatives in the physical domain and 
computational domain are as follows:

Ũφ = JφU+ JUφ,

F̃φ = ( Jξx)φF+ ( Jξy)φG+ JξxFφ + JξyGφ,

G̃φ = ( Jηx)φF+ ( Jηy)φG+ JηxFφ + JηyGφ,

Uφ = Uxxφ +Uy yφ, Fφ = ∂F

∂U
Uφ, Gφ = ∂G

∂U
Uφ,

(21)

where the subscript “φ” denotes ξ or η. ∂F
∂U , ∂G

∂U are the Jacobian matrices for fluxes in the physical domain. Jφ, Jξx, Jξy, Jηx,

Jηy, ( Jξx)φ, ( Jξy)φ, ( Jηx)φ and ( Jηy)φ all can be obtained analytically according to the mapping relation.
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Fig. 2. Projection of the mesh points in E3+1 onto the x–y–z plane.

Fig. 3. (a) Physical domain and (b) computational domain for the 2D case.

After updating variables in the computational domain, we need to use inverse transformation to get the variables in the 
physical domain, the relevant inverse transformations are as follows:

U = Ũ/ J ,

Uξ = (Ũξ − JξU)/ J ,

Uη = (Ũη − JηU)/ J ,

Ux = Uξ ξx +Uηηx,

Uy = Uξ ξy +Uηηy .

Below we will give a special introduction about the calculation of upwind fluxes, take the F̃1C as an example. Firstly, 
in the computational domain, Taylor expansion is used to get the left and right values ŨL , ̃UR from points V1 and V2, 
respectively. Then, transformation is used to get the left and right values UL , UR as well as the fluxes FL, FR , GL, GR in the 
physical domain. Finally, fluxes in the computational domain are obtained by using the second equality of Eq. (18).

3.3. Upwind CESE scheme in rectangular coordinates and general curvilinear coordinates for the 3D case

For the 3D case, the grid is split as shown in Fig. 2; it’s defined in a 4D hyperspace, some figures we can’t give visually, 
only through imagination. Such as the SE(C∗

1) of point C∗
1 is defined as the union of four hyperplanes x–y–z, x–y–t , x–z–t

and y–z–t , which intersect at C∗ . Moreover, the corresponding CE(C∗) is formed by hypersurfaces associated with SE (C∗), 
1 1 1
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SE (A1), SE (A2), SE (A3), SE (A4), SE (A5), SE (A6), SE (A7) and SE (A8). In analogy with the 2D case, each CE can be split 
into eight sub-CEs, and by imposing conservation law, i.e., Eq. (3) on each sub-CE, we can get umx , umy and umz . Detailed 
formulae are provided in the Appendix.

For the 3D curvilinear coordinates case, the nonsingular mapping is: x = x(ξ, η, ζ ); y = y(ξ, η, ζ ); z = z(ξ, η, ζ ). The 
related Jacobian matrix and inverse matrix are:

J = ∂(x, y, z)

∂(ξ,η, ζ )
=

⎛
⎝ xξ xη xζ

yξ yη yζ

zξ zη zζ

⎞
⎠ and J−1 = ∂(ξ,η, ζ )

∂(x, y, z)
=

⎛
⎝ ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

⎞
⎠ .

The 3D ideal MHD equations in the computational domain are as follows:

∂Ũ

∂t
+ ∂ F̃

∂ξ
+ ∂G̃

∂η
+ ∂H̃

∂ζ
= 0,

where

Ũ = JU,

F̃ = JξxF+ JξyG+ JξzH,

G̃ = JηxF+ JηyG+ JηzH,

H̃ = JζxF+ JζyG+ JζzH.

The relationships of conservative variables and flux vectors as well as their corresponding spatial derivatives in the physical 
domain and computational domain for the 3D case are as follows:

Ũφ = JφU+ JUφ,

F̃φ = ( Jξx)φF+ ( Jξy)φG + ( Jξz)φH+ JξxFφ + JξyGφ + JξzHφ,

G̃φ = ( Jηx)φF+ ( Jηy)φG+ ( Jηz)φH+ JηxFφ + JηyGφ + JηzHφ,

H̃φ = ( Jζx)φF+ ( Jζy)φG+ ( Jζz)φH+ JζxFφ + JζyGφ + JζzHφ,

Uφ = Uxxφ +Uy yφ +Uzzφ,

Fφ = ∂F

∂U
Uφ, Gφ = ∂G

∂U
Uφ,

where the subscript “φ” denotes ξ , η or ζ .

4. Method to clean the magnetic divergence error

When using Eqs. (4)–(7) to get the first-order derivatives relative to Bx , B y , we find this is a set of over-determined 
equations, so we use the least-squares method to solve it. Then the magnetic field divergence-free condition:

∇ · B = ∂Bx

∂x
+ ∂B y

∂ y
= u6x + u7y = 0, (22)

can be combined with other equations relative to Bx and B y to obtain a new set of over-determined equations. Thus, by 
using the least-squares method, the magnetic field divergence can be fundamentally controlled. The details of this method 
you can refer Yang et al. [52]. And you can also refer Balsara et al. [53]. In that paper they have given a discussion in detail 
about how to design schemes to preserve divergence-free combined with the magnetic field divergence-free constraint 
condition, i.e., “∇ · B = 0”.

For the 3D case, when using Eqs. (A.1)–(A.8) to get the first-order derivatives relative to Bx, B y, Bz , we use the least-
squares method to solve it, and the magnetic field divergence-free condition is:

∇ · B = ∂Bx

∂x
+ ∂B y

∂ y
+ ∂Bz

∂z
= u6x + u7y + u8z = 0. (23)

We should note that when using general curvilinear coordinates, Eq. (22) and Eq. (23) are satisfied in the physical domain. 
However, in the computational domain, we need to use transformation to get the equivalent formula. Take Eq. (23) as an 
example. According to the chain rule, we obtain

Ux = Uξ ξx +Uηηx +Uζ ζx,

Uy = Uξ ξy +Uηηy +Uζ ζy,

Uz = Uξ ξz +Uηηz +Uζ ζz.
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Then combined with the relationships Ũξ = JξU + JUξ , Ũη = JηU + JUη , Ũζ = JζU + JUζ , we can obtain the equivalent 
formula of Eq. (23) in the computational domain is as follows:

ũ6ξ − Jξu6

J
ξx + ũ6η − Jηu6

J
ηx + ũ6ζ − Jζ u6

J
ζx + ũ7ξ − Jξu7

J
ξy + ũ7η − Jηu7

J
ηy + ũ7ζ − Jζ u7

J
ζy

+ ũ8ξ − Jξu8

J
ξz + ũ8η − Jηu8

J
ηz + ũ8ζ − Jζ u8

J
ζz = 0.

5. Numerical tests

In this section, we show the use of some benchmarks to demonstrate the excellent characteristics of the upwind CESE 
scheme in capturing discontinuities and maintaining accuracy in both rectangular and general curvilinear coordinates. All 
the CFL number used are 0.8.

5.1. MHD blast wave problem in both rectangular and general curvilinear coordinates for the 2D case

MHD blast wave problem was designed by Skinner and Ostriker [54]. In this, fast shocks are driven to move outward by 
an over-pressured region. Then the fast shocks compress the plasma and magnetic field ahead while the plasma behind will 
become rarefied.

Firstly, we test the MHD blast wave problem in both rectangular coordinates and general curvilinear ordinates for the 2D 
case.

Similar to that in Ref. [54], the computational domain in rectangular coordinates is (x, y) ∈ [1, 2] × [−0.5, 0.5] and in 
polar coordinates is given as (r, θ) ∈ [1, 2] × [− 1

3 , 13 ], and the relationships between the computational domain (ξ, η) and 
the physical domain (x, y) are: x = r cos θ , y = r sin θ , where r = eξ , θ = η. The initial conditions are given as follows:

ρ = 1, vx = v y = vz = 0, Bx = B y = 1/
√
2, Bz = 0, p =

{
10 if

√
(x − 1.5)2 + y2 < 0.1,

0.1 otherwise.

The boundary values are fixed.

5.2. MHD blast wave problem both in both rectangular and general curvilinear coordinates for the 3D case

Then we test the upwind CESE scheme in both rectangular coordinates and spherical coordinates for 3D MHD blast 
wave problem. The computational domain in rectangular coordinates is (x, y, z) ∈ [1, 2] × [−0.5, 0.5] × [−0.5, 0.5] and the 
spherical coordinates is given as (r, θ, φ) ∈ [1, 2] × [π/2 − 1/3, π/2 + 1/3] × [−1/3, 1/3]. The relationship between the 
computational domain (ξ, η, ζ ) and the physical domain (x, y, z) is: x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ , where 
r = eξ , θ = η, φ = ζ . The initial conditions are given as follows:

ρ = 1, vx = v y = vz = 0, Bx = B y = Bz = 1/
√
3, p =

{
10 if

√
(x − 1.5)2 + y2 + z2 < 0.1,

0.1 otherwise.

The boundary values are fixed.
Fig. 4 and Fig. 5 give the contours of the density, pressure, specific kinetic energy and magnetic energy for the 2D 

MHD blast wave with 256 × 256 grids in rectangular coordinates at t = 0.2 by using original and upwind CESE schemes, 
respectively. Fig. 6 and Fig. 7 are the corresponding cases in curvilinear coordinates. From these plots, we can see that the 
structures are much clearer and identified by using upwind CESE scheme in both rectangular and curvilinear coordinates. 
From Fig. 8 to Fig. 11 which show the plots of the density, pressure, specific kinetic energy, and magnetic energy along 
line through the center (y = 0) of the 2D blast wave at t = 0.2 in curvilinear coordinates, we clearly observe that the 
discontinuous surfaces are much sharpener (such as those between x = 1.25 and x = 1.35, or x = 1.65 and x = 1.75). 
In addition, some small structures are captured very well by using the upwind CESE scheme while these discontinuous 
surfaces or small structures were smeared out more or less when using the original CESE scheme (especially at x = 1.25 or 
x = 1.75 in Fig. 8 and Fig. 9, between x = 1.2 and x = 1.3, between x = 1.4 and x = 1.5 or between x = 1.5 and x = 1.6, 
between x = 1.7 and x = 1.8 in Fig. 10, between x = 1.3 and x = 1.7 in Fig. 11).

Fig. 12 and Fig. 13 give the contour plots of the density, pressure and magnetic energy at the slice planes namely z = 0
or y = 0 for the 3D MHD blast wave with 128 × 128 × 128 grids at t = 0.2 in rectangular coordinates by using original 
and upwind CESE schemes, respectively. Fig. 14 and Fig. 15 are their corresponding cases in curvilinear coordinates. Fig. 16
shows the pressures along lines through the center of the 3D blast wave namely y = 0, z = 0. From these figures, we can 
see that the upwind CESE scheme has similar remarkable advantages over the original CESE scheme as the 2D case when 
used in the 3D MHD irrespective of the type of coordinates. We used the Intel Fortran compiler running on the Intel Xeon 
E7450 with a CPU clock speed of 2.4 GHz, and using O4 optimization option. By testing the CPU time, we conclude that it 
consumes almost similar time as the original second-order CESE scheme and delivers much better results than it.



858 Y. Yang et al. / Journal of Computational Physics 371 (2018) 850–869
Fig. 4. Contours of the density, pressure, specific kinetic energy and magnetic energy at t = 0.2 for the 2D MHD blast wave in rectangular coordinates by 
using the original CESE scheme. (For the color versions of all the figures, the reader is referred to the web version of this article.)

6. Conclusions

In this study, we extended the upwind CESE scheme in rectangular coordinates to general curvilinear coordinates for both 
2D and 3D MHD numerical simulations. In the future, this can be applied into the solar-terrestrial space physics problems, 
such as coronal mass ejections, the global evolution of magnetic structures, and solar wind and its interactions with the 
earth’s atmosphere. This upwind CESE scheme also paves the way to achieve the perfect combination of the CESE and FVM 
and is very flexible, allowing to combine all kinds of upwind schemes for different problems. Although in this study we 
have used only the CESE + HLL, but it has shown remarkable advantages over the original CESE in capturing discontinuities 
and maintaining robust property has shown at no extra computational cost.
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Fig. 5. Contours of the density, pressure, specific kinetic energy and magnetic energy at t = 0.2 for the 2D MHD blast wave in rectangular coordinates by 
using the upwind scheme.

Appendix A. Solving the derivations for 3D case by using upwind CESE scheme

Imposing conservation law, i.e., Eq. (3) on each sub-CE, we get
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Fig. 6. Contours of the density, pressure, specific kinetic energy and magnetic energy at t = 0.2 for the 2D MHD blast wave in curvilinear coordinates by 
using the original CESE scheme.
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Fig. 7. Contours of the density, pressure, specific kinetic energy and magnetic energy at t = 0.2 for the 2D MHD blast wave in curvilinear coordinates by 
using the upwind CESE scheme.
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Subtracting Eq. (A.1) from Eq. (A.2), subtracting Eq. (A.4) from Eq. (A.3), subtracting Eq. (A.5) from Eq. (A.6) and subtract-
ing Eq. (A.8) from Eq. (A.7), we can obtain four groups of umx as follows:
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]
, (A.9)
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Fig. 8. Pressure along line through the center (y = 0) of the blast wave at t = 0.2 in curvilinear coordinates.

Fig. 9. Density along line through the center (y = 0) of the blast wave at t = 0.2 in curvilinear coordinates.

Fig. 10. Specific kinetic energy along line through the center (y = 0) of the blast wave at t = 0.2 in curvilinear coordinates.
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Fig. 11. Magnetic energy along line through the center (y = 0) of the blast wave at t = 0.2 in curvilinear coordinates.
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In the similar way, we can get four groups of umy and umz , respectively as follows:
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Fig. 12. Contours of the density, pressure and magnetic energy at the slice planes namely z = 0 and y = 0 for the 3D MHD blast wave at t = 0.2 in 
rectangular coordinates by using the original CESE scheme.
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Fig. 13. Contours of the density, pressure and magnetic energy at the slice planes namely z = 0 and y = 0 for the 3D MHD blast wave at t = 0.2 in 
rectangular coordinates by using the upwind CESE scheme.
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Fig. 14. Contours of the density, pressure and magnetic energy at the slice planes namely z = 0 and y = 0 for the 3D MHD blast wave at t = 0.2 in 
curvilinear coordinates by using the original CESE scheme.
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Fig. 15. Contours of the density, pressure and magnetic energy at the slice planes namely z = 0 and y = 0 for the 3D MHD blast wave at t = 0.2 in 
curvilinear coordinates by using the upwind CESE scheme.
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Fig. 16. Pressure line profile along the center of the 3D blast wave namely y = 0, z = 0 at t = 0.2 in curvilinear coordinates.
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