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High-performance computational models are required to make the real-time or faster than real-time numerical prediction of 
adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore 
the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of 
solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our 
Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary so-
lar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as 
input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the 
mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolu-
tion of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind 
measurements from spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential 
field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and 
interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and 
the transition of the solar wind speeds and magnetic field polarities. 
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Space weather, with scientific research and applications as 
its two focal points, refers to conditions on the Sun and in 
the solar wind, magnetosphere, ionosphere, and thermo-
sphere that can influence the performance and reliability of 
space-borne and ground-based technological systems and 
that affect human life or health (Bothmer et al., 2007; 
Baker, 2002). Space weather is as variable as terrestrial 
weather. Like atmospheric science, space science now has 
an application branch that fulfills a societal role in serving 
human activities and mitigating the loss caused by destruc-
tive space weather. Like in terrestrial weather forecasting, 

numerical models are a critical part of any forecasting sys-
tem. 

Global computational models based on first principles 
represent a very important component of efforts to under-
stand the intricate processes coupling the Sun to the geo-
space environment. The hope for such models is that they 
will eventually fill the gaps left by measurements, extending 
the spatially and temporarily limited observational database 
into a self-consistent global understanding of our space en-
vironment. Presently, and in the foreseeable future, magne-
tohydrodynamic (MHD) models are the only models that 
can span the enormous distances present in the corona-      
interplanetary space, although even generalized MHD equa-



 Feng X S, et al.   Sci China Earth Sci   November (2013) Vol.56 No.11 1865 

tions are only a relatively low-order approximation to more 
complete physics by providing only a simplified description 
of natural phenomena in space plasmas. Promisingly, scien-
tists have started to use a three-dimensional MHD-based 
solar-magnetosphere-ionosphere coupling simulation for 
operative space weather forecasting purposes (Dryer, 2007; 
Feng et al., 2010, 2011a, b, 2012a; Hu et al., 2007; 
Janhunen et al., 1996; Jin et al., 2012; Lugaz et al., 2011; 
Lyon et al., 2004; Lyon, 2000; Ogino, 1986, 2002; Powell 
et al., 1999; Raeder et al., 2001; Riley et al., 2011, 2012a; 
Tanaka, 1994, 1995; Tóth et al., 2012; van der Holst et al., 
2010; Watermann et al., 2009). On one hand, especially for 
such applications, the robustness of the code is very im-
portant since the program is expected at least to converge 
for any solar wind input, if not necessarily to produce a 
correct forecast in every situation. On the other hand, fore-
casting in advance of the arrival and impact effect of severe 
space weather at the Earth is another crucial factor, since 
large solar eruptive events, such as coronal mass ejections 
(CMEs), arrive at the Earth within one to three days. CMEs 
can inject large quantities of mass and magnetic flux into 
the heliosphere and can drive interplanetary shocks, which 
are a key source of solar energetic particles and are known 
to be the major contributor to severe space weather at the 
Earth. Studies over the past decade using the data sets from 
SOHO, TRACE, Wind, ACE, STEREO, and SDO space-
craft, along with ground-based instruments, and CME mod-
eling (Feng et al., 2011a; Kleimann, 2012) have enriched 
our knowledge of the origins and development of CMEs at 
the Sun, and their evolution in interplanetary space and their 
contribution to space weather at the Earth (Webb et al., 
2012). For numerical space weather forecasts, the three 
most crucial quantities to be addressed by a model are the 
CME’s trajectory, travel time, and geoeffectiveness. 

In quantitative studies of the solar wind structures, 3D 
global MHD models have been developed (e.g., Feng et al., 
2010, 2007; Lugaz et al., 2011; Tanaka, 1995; Tóth et al., 
2012; Lionello et al., 2009; Mikić et al., 1999; Nakamizo et 
al., 2009; Cohen et al., 2008; Riley et al., 2006; Roussev et 
al., 2003; Taktakishvili et al., 2011; Tóth et al., 2005; Us-
manov et al., 2006). As pointed out by space weather scien-
tists (e.g., Aschwanden et al., 2008; Dryer, 2007; Feng et al., 
2011a; Watermann et al., 2009), high performance compu-
tational models require further improvements in order to 
make the real-time or faster than real-time numerical pre-
diction of adverse space weather events and their influence 
on the geospace environment. Computationally speaking, 
such speedup model improvement involves two issues. On 
one hand, numerical solutions to the governing magnetohy-
drodynamic (MHD) equations currently used for the nu-
merical space weather modeling from the Sun to Earth or 
beyond are typically feasible only on massively parallel 
computers for the sake of computational resources. On the 
other hand, one numerical challenge is due to the presence 

of different temporal and spatial scales on which solar wind 
plasma occurs throughout the vast solar-interplanetary space 
of these problems. 

Corona-interplanetary space involves a large extent, and 
contains many critical features, such as discontinuities and 
heliospheric current sheet, which have spatial scales many 
orders of magnitude smaller than the system size. In partic-
ular, the plasma density, the Alfvén velocity, interplanetary 
magnetic fields, and the plasma  vary over many orders of 
magnitude from the Sun to Earth. This also implies a large 
variation of the Courant-Friedrichs-Lewy (CFL) stability 
limit from corona to interplanetary space. Usually, time 
scales range from a few seconds near the Sun to the expan-
sion time of the solar wind from the Sun to the Earth (~105 
s). The numerical grids are either adapted to the small scale 
features in the system, or a brute force approach is used 
with as high numerical resolution as possible while fighting 
the limits of available computational power. For a typical 
system size of 215 × 215 × 215 RS

3 (RS = 6.955 × 105 km, 
the radius of the Sun) at a resolution of ~0.057 RS (compa-
rable to the thickness of heliospheric current sheets since 
the existence of a wide range in HCS width at 1 astronomi-
cal unit (AU) (1 AU is equal to 215 RS), is typically agreed 
to be from 40000 to 100000 km (Blanco et al., 2006; 
Behannon et al., 1981) or even smaller (Podgorny et al., 
2005), one would need times of 1010 grid cells. The in-
crease of grid points in 3D simulations costs both memory 
and computing time, e.g., increasing the resolution by a 
factor of 10 in all directions requires that the time stepping 
is also made 10 times more frequent. In total this means a 
factor of 10000, which is the difference between 1 s and 3 h 
in computing time. A simple Cartesian mesh would grossly 
under-resolve much of the problem, while over-resolving 
relatively uninteresting regions. These problems need solu-
tion-adaptive schemes, which enable us to define a different 
grid spacing in different parts of the Sun-to-Earth space, 
achieving the best resolution where mostly needed (Feng et 
al., 2010, 2012a). This adaptation should also be made dy-
namic, e.g., to follow the position of helioshpheric current 
sheet. 

Such highly parallelized computations of solar wind 
modeling requiring high arithmetic intensity is extremely 
well suited for running on the graphics processing units 
(GPUs). Specifically, the GPU addresses problems that can 
be expressed as data-parallel computations (the same pro-
gram is executed on many data elements in parallel) with 
high arithmetic intensity (i.e., the ratio of arithmetic opera-
tions to memory operations). Because the same program is 
executed for each data element, there is a lower requirement 
for sophisticated flow control, and because it is executed on 
many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations in-
stead of big data caches. The main difference between 
GPUs and central processing units (CPUs) is that GPUs 
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devote proportionally more transistors to arithmetic logic 
units and less to caches and flow control in comparison to 
CPUs. GPUs also typically have higher memory bandwidth 
that substantially outpaces its CPU counterpart (http://  
developer.download.nvidia.com/compute/DevZone/docs/ 
html/C/doc/CUDA_C_Programming_Guide.pdf). 

Due to the great computational power of the GPU, the 
GPU computing method has proven valuable in various 
areas of science and technology. 

1  GPU computing 

Modern many-core processor or multi-core processor, e.g., 
current generation NVIDIA and AMD GPU, is a highly 
parallel, highly multithreaded multiprocessor and has a 
unified graphics and computing architecture that serves as 
both a programmable graphics processor and a scalable par-
allel computing platform. 

The advent of the Compute Unified Device Architecture 
(CUDA) (NVIDIA Corporation, NVIDIA CUDA Compute 
Unified Device Architecture Programming Guide 2.2.1, 
May 2009, http://www.nvidia.com/object/cuda home new. 
html) hardware and software releases computational scien-
tists from working with graphics-specific shading languages. 
The CUDA programming model has an SPMD (single-     
program multiple data) software style, in which a program-
mer writes a program for one thread that is instanced and 
executed by many threads in parallel on the multiple pro-
cessors of the GPU. In fact, CUDA is an environment for 
writing parallel programs for the entire heterogeneous 
computer system. 

Open Computing Language (OpenCL) is another open 
royalty-free standard for general-purpose parallel program-
ming across CPUs, GPUs and other processors, giving soft-
ware developers portable and efficient access to the power of 
these heterogeneous processing platforms. OpenCL supports 
a wide range of applications, ranging from embedded and 
consumer software to high performance computing solu-
tions, through a low-level, high-performance, portable ab-
straction. By creating an efficient, close-to-the-metal pro-
gramming interface, OpenCL will form the foundation layer 
of a parallel computing ecosystem of platform-independent 
tools, middle ware and applications. Meanwhile, OpenCL 
consists of an API (Application Program Interface) for co-
ordinating parallel computation across heterogeneous pro-
cessors and a cross-platform programming language with a 
well-specified computation environment (http://www. 
khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/). 

As a result, GPUs have become an alternative parallel 
computing device for high-performance scientific compu-
ting (Che et al., 2008; Owens et al., 2007, 2008; Schenk et 
al., 2008). There are an increasing number of researches on 
using GPUs for scientific applications to both fluid and as-

trophysical simulations (Gaburov et al., 2009; Belleman et 
al., 2008; Schive et al., 2010; Wang et al., 2010).  

Michalakes et al. (2008) explored the performance of 
GPU by selecting a computationally intensive module from 
the Weather Research and Forecast (WRF) model and de-
mon-started a 20× speedup for a computationally intensive 
portion of the WRF model on an NVIDIA GTX8800 GPU 
and an overall 1.3× speedup. 

Brandvik et al. (2008) solved 2D and 3D Euler equations 
with uniform grids by a speedup factor of 29 (2D) and 16 
(3D). Elsen et al. (2008) solved 3D Euler equations on mul-
ti-block meshes, where speed-ups of over 40× were demon-
strated for simple test geometries and 20× for complex ge-
ometries. Using a quad-GPU platform, Thibault et al. (2009) 
observed two orders of magnitude speedup relative to a se-
rial CPU implementation of the Navier-Stokes (NS) equa-
tions. Jacobsen et al. (2010) presented a dual-level parallel 
implementation of the Navier-Stokes (NS) equations to 
simulate buoyancy-driven incompressible fluid flows on 
multi-GPU clusters with heterogeneous architectures, and 
found that performance on a fixed problem size using 128 
GPUs on 64 compute-nodes resulted in a speedup of 130× 
over the CPU solution using Pthreads on two quad-core 
2.33 GHz Intel Xeon processors. Then, DeLeon et al. (2012) 
extended earlier work (Elsen et al., 2008; Thibault et al., 
2009) on multi-GPU acceleration of an incompressible NS 
solver to include a large-eddy simulation (LES) capability. 
Kestener et al. (2010) solved the 2D compressible Euler 
equations on GPU with two different second order numeri-
cal schemes of Godunov and Kurganov-Tadmor types. 
Their tests showed that these two numerical schemes can 
achieve 30× to 70× speed-up compared to a mono-thread 
CPU reference implementation. 

Belleman et al. (2008) re-implemented the direct gravita-
tional N-body simulations on GPUs using CUDA, and for  
N≥105, they reported a speedup of about 100 compared to 
the host CPU and about the same speed as the GRAPE-6Af. 
Gaburov et al. (2009) presented Sapporo, a library for per-
forming high-precision gravitational N-body simulations on 
an NVIDIA GT200 GPU to get a noticeable speedup 2× in 
peak performance. Schive et al. (2010) implemented the 
GPU adaptive mesh refinement for astrophysics problems 
and obtained speedup factors of 12.19 and 10.47 on 1 GPU 
with 40963 resolution and 16 GPUs with 81923 resolution, 
respectively. Wang et al. (2010) described an implementa-
tion of compressible inviscid fluid Harten-Lax-van Leer 
solvers for pure hydrodynamic and magnetohydrodynamic 
cases with block-structured adaptive mesh refinement on 
GPUs using NVIDIA’s CUDA, and achieved an overall 
speedup of approximately 10 times faster execution on one 
graphics card as compared to a single core on the host 
computer, and this speedup in uniform grid runs as well as 
in problems with deep AMR hierarchies. Wong et al. (2011) 
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have implemented a TVD (total variation diminishing) 
MHD code on GPUs and achieved speedup factors of 106 
with 10242 grids (2D problem) and 43 with 1283 grids (3D 
problem), respectively. 

However, to date, there are few studies on the application 
of GPU for solving the full MHD equations for space 
weather modeling in solar-terrestrial space. Thus, it is un-
doubtful that the porting of three-dimensional numerical 
solvers from a conventional CPU implementation to the 
novel target platform of the Graphics Processing Unit (GPU) 
is promising in establishing speedup code. The objective of 
the present paper is to transfer our SIP-AMR-CESE MHD 
model (Feng et al., 2012a) to GPU platform. 

2  Description of AMR SIP-CESE MHD model 

This section is devoted to the introduction of governing 
equations, grid partition in the computational domain of the 
Sun-to-Earth spherical shell and the AMR Implementation 
of SIP-CESE MHD Model. 

2.1  Governing equations 

The three-dimensional equations governing solar-wind 
plasma are the set of the MHD equations in the conservative 
form in the frame corotating with the Sun, which reads as 
follows: 
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sure, and magnetic field. In eq. (1), the external force 
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gravity force and inertial force due to the corotating frame 
with the Sun. G, Ms, and  are the gravity constant, solar 
mass, and solar angular speed.  is the specific-heat ratio 
and is taken to be 1.5 here. Solar rotation is considered in 
the present study with angular velocity || = 2/27.2753 
radian day1. In eq. (1), the symmetrizable source term 

T(0, , , )  B B v B v  (Powell et al., 1999) and the diffusive 

control term ( ) B  (Feng et al., 2011b, 2012a; Marder, 

1987; van der Holst, 2007) have been added in the MHD 
equations to deal with the divergence of the magnetic field. 
Here, following Feng et al. (2010, 2011b),    

1
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 where x, y, and z are grid 

spacings in Cartesian coordinates. 
In order to achieve the observed pattern of fast and slow 

solar winds through MHD simulations, the energy-source 
term Qe in the energy equation adopts the volumetric heat-
ing method as done by Feng et al. (2012a) with the help of 
the Wang-Sheeley-Arge (WSA) model (Wang et al., 1990; 
Arge et al., 2000, 2003). This energy-source term takes into 
account the flux-tube expansion factor fS and the minimum 
angular separation (at the photosphere) between an open-     
field foot point and its nearest coronal hole boundary (b, 
measured in degrees), which have been used for the so-
lar-wind study (Nakamizo et al., 2009; Taktakishvili et al., 
2011). 

Other details such as the normalization and the splitting 
of the full magnetic-field vector B into the sum of a 
time-independent potential magnetic field [B0] and a 
time-dependent deviation B1, i.e., B = B0 + B1 , in the gov-
erning equations, have been given in Feng et al. (2012a). 

The computational domain is set to be the domain [(r, , 
): 1 RS≤r≤240 RS; 0≤≤; 0≤≤2]. The initial 
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solar-surface temperature and number density are 1.3×106 K 
and 2.0×108 cm3. Then, the code is initialized by using 
Parker solar-wind solution and the potential magnetic field 
based on the line-of-sight measurements of the photospheric 
magnetic field from Wilcox Solar Observatory (WSO) at 
Stanford University for the Carrington Rotation (CR) of 
interest. The same projected-normal characteristic boundary 
conditions and initial conditions as those given in Section 5 
of Feng et al. (2010) are employed in the present article. 
Finally, our model is run in time-relaxation method until a 
quasi-steady state is achieved. 

The SIP-CESE MHD model has been developed by us in 
a series of articles (Feng et al., 2007, 2010, 2012a). For the 
present article to be self-contained, in what follows we pre-
sent the main points of six-component grid and curvilinear 
coordinate transformation from physical to reference coor-
dinates from the context of solar-wind modeling. 

2.2  Six-component grid and curvilinear coordinate 
transformation 

In the six-component grid introduced by Feng et al. (2010) 
for the solar-wind study, the spherical-shell computational 
domain is decomposed into six identical components with 
partial overlapping regions (Figure 1), and each component 
is identically defined by a low-latitude spherical domain 
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The parameter  =  is determined by the grid spacing 
and layers of guard cells required for the minimum overlap-
ping area of two grid sizes. In the six-component grid parti-
tions, the same metric can be used and the component grids 
can be transformed into each other by coordinate transfor-
mation such that the basic equations, numerical grid distri-
bution, and all numerical tasks are identical in each compo-
nent. Hence we do not have to distinguish them and we only 
need to describe the grid partition and the associated coor-
dinate transform. The grid points in both  and  directions 
are evenly spaced such that  = . In the r direction, a 

new variable  is introduced as a reference coordinate, 
which is exponentially related with r by r = e. In this way, 
the grid spacing [r] in the r direction is always around r 
and rsin by choosing  = ln(1 + ), so that each grid 
cell is always approximately a cube. As pointed out by Feng 
et al. (2012a), the reference coordinates (, , ) used in our 
CESE solver refer to (, , ) here, and with this setting, the 
grid cell in the reference space (, , ) is a rectangular box. 
In principle, any parameter a>1 can be chosen instead of e 
and a representative case a>1.481 is just presented for the 
validation (Feng et al., 2012a). 

Initially, the computational domain in every reference 
component is divided into 14 × 4 × 4 blocks with each block 
consisting of 6 × 6 × 6 cells. These correspond to N = N = 
25 and  = /48 by defining gird points on each compo-
nent in physical space as j = min + j, j = 0, 1,…, N + 1, 
k = min + k, k = 0, 1,…, N + 1 and  = (max 
min)/(N1),  = (maxmin)/(N1), where N and N are 
the mesh numbers of the latitude and longitude, respectively. 
min = /4, max = 3/4, min = 3/4, max = 5/4. The in-
nermost region is set on the solar surface at 1 RS and the 
outermost region on the sphere at 240 RS, such that each 
component of the physical grids is equivalent to 0≤≤ 
5.4807, /4≤≤3/4+, and 3/4≤≤5/4+ in the 
computational domain or reference space, with  = ln(1 + 
), and  =  =  =  = /48. Corresponding to the 
computational nodes (Nr, N, N) in the physical space, as-
sume (N, N, N) be the associated computational nodes in 
the ,  and  directions for a component computational 
domain in the reference coordinate space (, , ) or direct-
ly denote it by (Nx, Ny, Nz) for convenience. 

With the transformation [J] between the coordinates of 
the reference space and the physical space for one compo-
nent, 
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Figure 1  Six-component grid. (a) A spherical overset grid consisting of six identical components; (b) dividing a sphere into six identical components with 
partial overlap; (c) stacking the spherical meshes of each component up in the radial direction. 
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the 3D MHD equations of solar-wind plasma (1) in the ref-
erence coordinates (ξ, η, ζ) can read below: 

 
ˆˆ ˆˆˆ ˆ ˆ

ˆ ,
t

  

     
     

      
      

F G HU F G H
S  (3) 

where the corresponding transformation of coordinates be-
tween any two components or transformation of solution 

variables between ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( , , , , , , , )  U F G H F G H S  in the refer-

ence space and ( , , , , , , , )  U F G H F G H S  in the physical 

space on an arbitrary component have been provided by 
Feng et al. (2010) and Jiang et al. (2010). 

Note that eqs. (3) and (1) share the same form, and thus 
the CESE solver for eq. (1) in the physical space can be 
transplanted directly to the CESE solver for eq. (3) in the 
reference coordinate space (, , ) with rectangular box 
cells in a logically Cartesian space. 

With these in mind, we can easily take turns between the 
physical-solution variables and the reference-solution varia-
bles. That is, if the initial inputs of the physical solution 
variables are given, we first use F, G, H, S to calculate the 

fluxes ˆ ˆˆ ˆ, , ,F G H S  and apply the CESE solver to eq. (3) to 

obtain the reference-solution variables Û  and their first-      

order derivatives ˆ ˆ ˆ( , , )  U U U  at the new time step. Fi-

nally, we can recover the physical solution variables U. Of 
course, we can reverse the above process from the refer-
ence-solution variables to the physical-solution variables 
when needed. 

2.3  AMR implementation of SIP-CESE MHD model 

Feng et al. (2012a) presented the details of the AMR im-
plementation of the SIP-CESE MHD model on the 
six-component grid system (Figure 1) of the spherical-shell 
domain in solar-terrestrial space. To accomplish this, all the 
ranks are classified into six groups, each of which corre-
sponds to one component grid system and deals with the 
same grid, basic equations, and numerical task. For a spher-
ical surface grid (, ) with piling up the radial direction, a 
simple radial decomposition of the spherical shell computa-
tional domain can be managed to yield very good load bal-
ancing since the processor workload and the communication 
load are very similar for each processor. However, this is 
not necessarily true for other grids, in particular AMR in 
Cartesian coordinates. With the help of the PARAMESH 
package at http://sourceforge.net/projects/paramesh/, AMR 
implementation is carried out in the associated reference 
component space (, , ) of a rectangular box in a logi-
cally Cartesian coordinate, and the PARAMESH package 
decomposes every reference component (i.e., our computa-
tional space) into many blocks of the same size, and organ-
izes all the blocks in the whole computational space 
(patched by the six reference components) into an oct-tree 

structure. Both the solution variables and their first-order 

derivatives ˆ ˆ ˆ ˆ( , , , )  U U U U  are stored at each solution 

point, which have the number of variables nvf = 4 × 8 = 32. 
Initially, the computational domain in every reference 

component is divided into 224 blocks with each block con-
sisting of 8 × 8 × 8 cells with one layer of guard cells in-
cluded. Totally we have 224 blocks for each component. 
That is, 6 × 4 × 4 × 14 blocks for the whole computational 
domain. The SIP-AMR-CESE MHD model carries out the 
AMR implementation with the help of PARAMESH ac-
cording to the refinement strategy of the curl of the mag-
netic field (e.g., Feng et al. (2012a) and references therein). 

In solar-wind modeling, the topology of helioshperic 
current sheet is an important structure and thus only the curl 
of the magnetic field is used as our refinement strategy to 
capture the current sheet. The standard deviation about zero 
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and  =1010 to set the thresholds of refining and coarsening 
grid (De Zeeuw, 1993), with V being the spatial cell volume. 
When the maximum of this criterion in a block is greater 
than e, this block is flagged to be refined, while if the 
maximum in a block is less than ςe, this block is flagged to 
be coarsened.  and ς are selected according to different 
physical time (tH in units of hours) intervals during the 
code’s running. That is, when tH < 20,  = 3 and ς = 0.1; 
when 20≤tH<50,  = 6 and ς = 0.2; when 50≤tH<100,  = 
10 and ς = 0.3; when 100≤tH<160,  = 15 and ς = 0.4; 
when tH≥160,  = 6 and ς = 0.1. With these settings, three 
levels of grid refinement are used to obtain a grid cell size 
of 0.012 RS on the solar surface. The grid throughout the 
simulation is refined to obtain a grid cell size of about 0.16 
RS with three levels of grid refinement near the current 
sheet within 20 RS and it is about 0.55 RS near 1 AU with 
five levels of grid refinement. The maximum grid cell size 
is about 1.31 RS in the corona and about 7 RS in the inner 
heliosphere. And the most densely refined component can 
have about 8800 blocks. 

3  OpenCL programming model and perfor-
mance 

Figure 2 shows the whole procedure implementation of 3D 
SIP-CESE model with block-structured adaptive mesh  
refinement on multi-GPU clusters using OpenCL. Noticea-
bly, we also combine OpenCL with MPI to run the code. In 
the framework, since the CESE solver is computationally 
dominant, which takes up 94% time during one timestep, in 
this work we consider the mapping of CESE solver onto 
GPU while leaving the creation and refinement of the grid 
hierarchy, OpenCL initialization, the disposal of boundary  
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Figure 2  The flowchart of GPU implementation of SIP-CESE MHD model. 

conditions and MPI communication on CPU. 
As mentioned above, in our six-component mesh grid 

system, the parallel implementation in the whole computa-
tional domain of the spherical shell from the Sun to Earth is 
realized by domain decomposition of six-component de-
composition of the spherical surface and PARAMESH ap-
plication program interface (API). Correspondingly, we will 
have a similar grid structure of six-component overlapping 
patches in logically Cartesian space. In the present work, we 
employ 24 processes on CPUs to deal with the whole com-
putational domain. 

Within the same component or in the intra-component, 
we use PARAMESH guardcell API to manage guardcells 
that are responsible for the neighboring blocks. In the 
meanwhile, the boundary or internal border value in the 
overlapping area of inter-components needs to be deter-
mined by an interpolation from its neighbor component 
grids according to the related geometrical positions of 
component grids (Feng et al., 2010). We take advantage of 
non-blocking communication to overlap the time of compu-
tation. That is, during the data transferring of overlapping 
areas among CPU processes, the computation on the inner 
portion of the component can start and operate in parallel 
with the MPI non-blocking communication. First, the CPUs 
compute the values in the overlapping area of inter-       
components, and then send or receive data using MPI 
non-blocking communication, at the same time the GPUs 

compute (Un, Uxn, Uyn, Uzn). Afterwards, using MPI-Wait 
synchronizes all processes. Last, update (U, Ux, Uy, Uz) in 
the whole domain and compare the current time with the 
target time. With this implementation of overlapping the 
computation of the inner portion with the memory transfer 
of the inter-components, speed-up ratio can be improved. 
Figure 3 shows a partial host-side code that implements the 
SIP-CESE MHD model on the six-component grid. 

The computational domain is first covered by root blocks 
with the lowest spatial resolution. Then, according to the 
user-defined refinement criteria as done by Feng et al. 
(2012a), each root block may be refined into eight child 
blocks with a spatial resolution twice that of their parent 
block. The same refinement operation may further be ap-
plied to all blocks in different refinement levels. As usual, 
each block has a fixed number of 8 × 8 × 8 cells. (Initially, 
56 blocks are assigned to each process that corresponds to 
one GPU, and therefore a single GPU kernel can be applied 
to all the 56 blocks.) Since the amount of computation 
workload of each block is the same, there will be no syn-
chronization overhead when multiple blocks are evolved in 
parallel by GPU. As time advances, cell refines and coars-
ens to different levels on different components and thus 
number of blocks will change correspondingly. When map-
ping all blocks to GPUs as shown in Figure 4, the mapped 
workspace on 24 GPUs must guarantee the coverage of the 
whole computational nodes and each process must have the  
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Figure 3  Partial host-side code that implements the SIP-CESE MHD model on the six-component grid. The outer loop is used for time stepping while the 
inner loop is for the solution of the CESE solvers. CPU process is created for each available GPU and executes the code above. 

 

Figure 4  Mapping of blocks to GPUs. 



1872 Feng X S, et al.   Sci China Earth Sci   November (2013) Vol.56 No.11 

capability of copying with additionally new-born blocks 
after refinement within its allowed maximum number of 
initial 56 blocks. In practice, in GPU workspace, we can set 
the size of a work group as 64 × 8 work items for one block 
with 8 × 8 × 8 cells. That is, each work item in its work 
group computes one cell of a block. The most heavily 
tasked process holds about 2500 blocks. In this case, 2500 
blocks have to be divided into seven sequential calculations 
on GPU since our GPU card is out of memory after the 
block size exceeds 400. Here, we can set the number of 
work group as 360 in order to include the maximum number 
of all the permitted cells in the same step even at the finest 
refinement levels (at most 5 levels in practice). 

The test cases are carried out on a 12-node GPU/CPU 
cluster with two quad-core Intel Xeon E5620 processors 
operating as 2.4 GHz. Each node consists of two GPU cards, 
and the cluster, in total, has 10 Tesla C1060 cards and 14 
Tesla C2050 cards, which are connected by Gigabit Ether-
net. The CPU/GPU cluster is equipped with OpenCL 1.1 
supported by CUDA 4.0, and MPI Compiler supplied with 
Open MPI 1.3 (http://www.open-mpi.org/), which is com-
piled by GCC 4.1 (GNU Compiler Collection, http://gcc. 
gnu.org/) with options “-O3”. Table 1 shows a preliminary 
performance comparison between the CPU and GPU of 
major calculations within CESE solver in double precision 
with different block sizes. From this table we can see that 
the speedup ratio increases with the block size. Performance 
comparison of one timestep between the CPU and GPU in 
double precision in global computation domain shows that 
using 24 MPI processes without GPU takes us 85.88 s, 
while 24 MPI processes with GPU 17.54 s give us about 5× 
speedup. The present OpenCL code using 24 MPI processes 
on CPU/GPU cluster finishes with wall time 30 h to reach a 
steady-state at the physical time 180 h for one CR. However, 
with the use of 96 MPI CPU processes for one CR it takes 
36 h wallclock time. 

4  Numerical results 

In this section, we present test simulations of the solar wind 
background in CRs 2058 and 2062 to demonstrate that the 
SIP-CESE AMR MHD model run on the GPU/CPU cluster 
in double precision can greatly reduce the computing hours 
without any loss of accuracy. 

CR 2058 lasted from June 21 to July 17, 2007 and CR 
2062 from October 8 to November 4, 2007. Both CRs were 
near the most recent solar minimum, which had many unu-
sual properties. The sunspot numbers were at their lowest in 
75 years (Gibson et al., 2009) and the arithmetic mean polar 
field strength during the 2008 minimum was only two thirds 
of that during the 1976, 1986, and 1996 sunspot minima. 
The solar minimum also observed 15 percent smaller polar 
hole areas than those at the beginning of SC 23 and larger 
and more long-lived mid-latitude and low-latitude coronal 
holes (MLCHs) between ±40° latitudes around the solar 
equator. Other distinct features include multiple white-light 
coronal streamers, peculiar heliospheric current sheets 
(HCSs) of significantly high inclination (de Toma et al., 
2010), the sparser and cooler fast solar wind (McComas et 
al., 2008) and the smaller average radial component of IMF 
(Smith et al., 2008). As we see below, our model run on the 
GPU/CPU cluster can reproduce most of these peculiarities. 

4.1  Steady Corona 

Figure 5 displays the synoptic maps of coronal observations 
from the SOHO/EIT 195 Å observations (upper panels) and 
from the model solution (lower panels) for CRs 2058 and 
2062. The modeled coronal holes (the open-field regions) in 
the lower panels are shaded white and the other regions (the 
closed-field regions) green. The open-field and closed-field 
regions are determined by tracing the magnetic field lines 
from 6 RS back to the photosphere. In the observation maps,  

Table 1  Preliminary performance comparison (s/step) between the CPU and GPU of major calculations in double precision with different block sizes 

Block size 
Operations (including data copying 

between GPU and CPU) 
CPU (Intel® Xeon® CPU 

E5620@2.40 GHz) 
GPU (C2050) Ratio 

48 

Flux (Ut, FU,...) 0.14 0.029 4.81 

Un 0.32 0.039 8.08 

Ux, Uy, Uz 0.078 0.013 5.99 

all 0.54 0.081 6.66 

192 

Flux (Ut, FU,...) 0.56 0.075 7.42 

Un 1.29 0.17 7.68 

Ux, Uy, Uz 0.68 0.078 8.66 

all 2.53 0.33 7.76 

384 

Flux (Ut, FU,...) 1.12 0.14 8.10 

Un 2.38 0.31 7.58 

Ux, Uy, Uz 1.45 0.16 8.92 

All 4.95 0.61 8.11 
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Figure 5  Synoptic maps of the coronal holes at 1 RS for CRs 2058 (left) and 2062 (right). The first row is the SOHO/EIT 195 Å observation, in which the 
black vertical stripes represent data gaps. The second row presents the open-field regions and closed-field ones from the SIP-AMR-CESE MHD model, 
where the green shaded areas are of closed magnetic field and the white regions are of open field. 

coronal holes are characteristic of low emission represented 
by dark color due to the continuous expansion of the solar 
wind. We can see that the equatorward boundaries of the 
northern polar coronal holes ranges between 60°–73°N for 
CRs 2058 and 2062 from both the observations and the 
model results. As for the southern polar holes, there is one 
extending coronal hole around Longitude 160° for each CR 
seen from the simulated results and the observations as 
shown in Figure 5. 

Mid-latitude or equatorial holes were a special observa-
tional feature during the 2008 solar minimum and attracted 
the interests of many solar physicists and heliophysicists 
(e.g., Riley et al. (2012a); Gibson et al., 2009; de Toma et 
al., 2010; McComas et al., 2008; Lee et al., 2009; Yang et 
al., 2011; Abramenko et al., 2010). Obviously, the model 
captures the isolated equatorial hole (IEH) centered at (, ) = 
(10°, 225°) for both CRs, but the size of the modeled IEH is 
smaller than that observed. Moreover, the model result 
misses the IEHs centered at (, ) = (20°, 0°) and (, ) = 
(20°, 290°) for CR 2058. These discrepancies result from 
the inherent deficiency of the MHD model with the poten-
tial field solution based on the photospheric magnetograms 
as the bottom boundary conditions, which can be confirmed 
by the previous study on the steady solar wind background 
of CR 2055 (Feng et al., 2012b) and Year 2007 (Yang et al., 
2012), where the MHD simulation was driven by dai-
ly-updated magnetic field synoptic data. Feng et al. (2012c) 
constructed a data-driven model for the study of dynamic 
evolution of the global corona from September 4, 1996 to 
October 29, 1996 that can respond continuously to the 

changing of the photospheric magnetic field, where the 
global time-varying and self-consistent synchronic snap-
shots of the photospheric magnetic field produced by a sur-
face flux transport model is used to drive the 3D numerical 
global coronal AMR-CESE-MHD model (Feng et al., 2012a) 
on an overset grid of Yin-Yang overlapping structure. They 
found that the data-driven MHD model achieved better re-
sults than the model with bottom radial magnetic field fixed 
in the frame corotating with the Sun, which is promising but 
there is still a long way to go in view of practical prediction. 
To sum up, our simulation has roughly captured the main 
coronal observations. 

In Figure 6, we present the synoptic maps of the observa-
tions and simulated results for CRs 2058 (left column) and 
2062 (right column). The maps of white-light polarized 
brightness (pB) at the east and west limbs observed by 
SOHO/LASCO-C2 are shown in Rows 1 and 2, where the 
bright areas in pB images often indicate that there are 
high-density structures near the sky plane along the line of 
sight through these points. Rows 3 and 4 in Figure 6 display 
the synoptic maps of the proton number density overlaying 
the isolines of the radial magnetic field and the radial veloc-
ity on the surface of 2.5 radii. The solid lines in Rows 1 and 
2 and the dashed lines in Row 4 represent the magnetic neu-
tral line, where the radial component of the magnetic field is 
null. 

Figure 6 shows that both the MHD and PFSS models 
gave almost the same magnetic neutral line (MNL) charac-
terized by a high peak roughly at  = 150°, a low one at  = 
310°, and a trough centered at  = 240°. Figure 6 reveals  
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Figure 6  Synoptic maps at 2.5 RS for CRs 2058 (left) and 2062 (right). The first and second rows are the white-light polarized brightness at the east and 
west limbs from SOHO/LASCO-C2. In the first and second rows, the black lines denote the magnetic neutral lines from the MHD model and the white lines 
from the PFSS model. The third row overlays the isolines of the radial magnetic field [Gauss] on the contour map of the simulated number density N (105 
cm3) and the fourth rows are the pseudo-color images of the radial speed vr (km/s). In Row 3, the dashed lines stand for inward radial magnetic field and the 
solid ones outward radial magnetic field. The dashed lines in the last row denote the magnetic neutral lines. 

 
that the MNL is coincident with the locations of the bright 
structures in SOHO/LASCO-C2 pB observations and sur-
rounded by the regions of high-density and low-speed 
plasma flow. It should be noted that pB-enhanced regions 
are also present near (, ) = (20°, 160°) in CR 2058 and 
(, ) = (20°, 220°) in CR 2062, which are away from 
MNL. This phenomenon is believed to be associated with 
uniploar streamers (Yang et al., 2012; Riley et al., 2012b). 

Figure 7 presents the white-light pB images from 2.3 to 6 
RS recorded by SOHO/LASCO-C2 (upper panels) and syn-
thesized from the modeled results (lower panels) at  = 
0°–180° for CRs 2058 and 2062. The simulated magnetic 
field topologies projected on the meridional planes from 1 
to 6 RS are exhibited in Row 1 of Figure 8 and the colors of 

the points on the force line are coded by the magnitude of 
the radial speed. Rows 2 and 3 in Figure 8 present the sim-
ulated radial solar-wind speed from 1 to 13 RS on the me-
ridional plane and the simulated current sheet from 1 to 6 
RS. 

Combining Figures 7 and 8, we can find that most ob-
served bright structures on both limbs of Figure 7 can be 
explained to be the effect of high-density regions around the 
MNL or there are high-density regions near the sky plane. 
However, the south bright structures on the west limb for 
CR 2062 are probably associated with the abrupt change of 
the MNL and the edges of the unipolar streamers or pseu-
do-streamers roughly centered at Longitude 220°. Unipolar 
streamers separate holes of the same polarity, and hence  
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Figure 7  The coronal observations and the simulation results on the 
meridional plane at  = 0°–180° for CRs 2058 (left) and 2062 (right). The 
first and second rows are the white-light pB images from 2.3 to 6 RS rec-
orded by SOHO/LASCO-C2 and computed from the simulation, respec-
tively. 

contain a double loop structure and emanate low-speed solar 
wind in interplanetary space (Riley et al., 2012b). 

4.2  Interplanetary solar wind 

Now we focus our attention on the solar wind structures in 
interplanetary space and the in-situ measurements. We pre-
sent the model solutions on the meridional plane and at the 
spheres of 20 RS and 215 RS in Figure 9 and compare the 
modeled temporal profiles of the solar wind parameters with 
the in-situ measurements in Figure 10. Figure 9 shows that 
the HCSs for both CRs have a peak and a trough and are 
surrounded by plasma flow of low speed and high mass flux. 
For CR 2058, the peak is roughly centered on at φ= 150° at 
2.5 Rs shifts to  = 140° at 20 RS and  = 90° at 215 RS due 
to the solar rotation, while the trough at  = 230° shifts to  = 
220° at 20 RS and  = 180° at 215 RS. The structure of the 
HCS for CR 2062 is similar to that for CR 2058, but the 
longitudes of the peak and the trough increase by about 
15°–20°. Additionally, the highest mass-flux regions are 
coincident with the locations of HCS and the latitudinal 
width of the low-speed solar wind (Vr < 550 km/s) is about 
50°–65° for both CRs, which is 40° in the previous solar 
minimum. These are consistent with the studies on the unu-
sual solar minimum caused by the weaker polar photospheric 
magnetic field (de Toma et al., 2010; Yang et al., 2011). In  

 

 

Figure 8  The coronal observations and the simulation results on the meridional plane at  = 0°–180° for CRs 2058 (left) and 2062 (right). The first row is 
the simulated magnetic field topology projected on the meridional planes from 1 to 6 RS. The color bars on the magnetic field lines stand for the magnitude 
of radial speed. The second row is the simulated radial solar-wind speed on the meridional planes from from 1 to 6 RS, where the white quadrilaterals denote 
the grid blocks. The last row exhibits the simulated current sheets from 1 to 6 RS. 
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Figure 9  The simulated steady solution in interplanetary space from the MHD model for CRs 2058 (left) and 2062 (right). The isolines of the radial speed 
Vr (km/s) superimposed on the synoptic pseudo-color image of the mass flux density Fm (108 km s1 cm3 RS) at 20 RS (Row 1), the pseudo-color images of 
the radial velocity in the solar equatorial plane (Row 2), the synoptic contours of the simulated proton number density N (cm3) (Row 3) and Vr (km/s) (Row 
4) at 215 RS. In Rows 1, 3 and 4, the dashed lines denote the magnetic neutral lines. 

addition, the solar winds in the equatorial plane for both 
CRs consist of two low-speed streams and two high-speed 
streams. 

Figure 10 shows that the model solutions have basically 
captured the stream structures for the two CRs. Both the 
observed and modeled temporal profiles of the solar wind 
speed exhibit an initial long-duration of slow solar wind 
followed by a strong and steep high-speed stream on Day 12 
of CR 2058 and Day 9 of CR 2062. The second modeled 
high-speed stream rises on Day 18 of CR 2058 and Day 17 
of CR 2062, but declines so slowly that the solution misses 
the low-speed stream between the second and third 
high-speed streams for both CRs. In addition, the modeled 
polarity of the radial magnetic field for CR 2058 switches 
from inward to outward on Day 14, two days earlier than 
the in-situ measurements, while for CR 2062, it changes 

from inward to outward on Day 17, one day later than the 
observation. Generally speaking, the model reproduces the 
observed polarity of the radial magnetic field with a rea-
sonable accuracy. 

5  Conclusions 

The SIP-CESE MHD model’s implementation of the adap-
tive-mesh-refinement (AMR) and message passing interface 
(MPI) enables the full exploitation of the computing power 
in a heterogeneous CPU/GPU cluster and significantly im-
proves the overall performance. Our initial tests with avail-
able hardware show speedups of roughly 5× compared to 
traditional software implementation. This work presents a 
novel application of GPU to the space weather study. 
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Figure 10  The calculated MHD steady state at 1 AU for CRs 2058 (left) and 2062 (right). The first, second, third, fourth rows are the comparisons between 
the MHD results and the one-hour averaged OMNI data near 1 AU for radial solar-wind speed Vr, number density N, temperature T, and radial magnetic 
field Br, respectively, where the green lines denote the observations and the red lines represent the numerical results. 

The performance of the modified 3D MHD simulation 
code using CPU/GPU cluster in double precision was eval-
uated. By exploiting the feature of non-blocking communi-
cation for parallel execution between CPU and GPU, the 
data transferring of the overlapping areas among different 
components can be covered with the execution of the GPU 
solvers, and yields considerable performance enhancement. 
Although we used a simple parallelization approach, the 
computational speed of the modified code was improved 
significantly under the condition of the same processes. The 
performance of the present OpenCL code using CPU/GPU 
cluster in double precision was evaluated to give a speedup 
of 5× (at least) without any optimization. However, the data 
transfer between the CPU and the GPU or between comput-
ers in the multi GPU technique incurs large costs. For such 
simulation run with a large amount of data input and output 

(I/O), the wall clock time spent on I/O operations can easily 
exceed the time needed for the calculations. In our code, the 
time spent transferring data using MPI among GPUs, 
guardcell filling and mesh refinement is 30% more of  
magnitude than that of calculations using GPUs, since we 
have at least 32 variables (U, Ux, Uy, Uz) stored and trans-
ferred. 

A direct improvement at hand is to further consider the 
following aspects: (1) load balance and memory manage-
ment in MPI will be left for next consideration, and (2) spa-
tial resolution needs to be further refined. Our grid resolu-
tion far from the Sun is still low, since the existence of a 
wide range in HCS width at 1 AU is typically agreed to be 
from 40000 to 100000 km (Blanco et al., 2006; Behannon et 
al., 1981), a typical size of grid cell at 1 AU with a resolu-
tion of 0.057 RS is required, in order to be comparable to the 
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thickness of HCS (heliospheric current sheets). 
The validated simulations for the steady corona and in-

terplanetary solar wind reveals that the SIP-CESE AMR 
MHD model run on CPU/GPU clusters in double precision 
can reproduce the shapes and distributions of the polar cor-
onal holes and the presences of the equatorial holes ob-
served by SOHO/EIT and LASCO C2. It can also achieve 
the basically consistent temporal profiles of solar wind pa-
rameter at 1AU with the in-situ measurements. On the other 
hand, we should also note that there are some discrepancies 
between the numerical results and observations, such as the 
areas of the equatorial holes, the magnitudes of radial mag-
netic fields and arrival times of the high-speed streams at 
the Earth. In order to achieve better numerical results, 
which can capture the structures of the heliosphere during 
specific time periods more accurately, we should employ 
high time-cadence photospheric magnetograms to drive the 
model just as done by Riley et al. (2012a), Feng et al. 
(2012b, c), and Yang et al. (2012). Other considerations 
may include using synoptic maps from different observato-
ries and choosing the solution that best matches the obser-
vations, and driving the numerical model by using the syn-
optic maps from the Air Force Data Assimilative Photo-
spheric flux Transport model (Henney et al., 2012; Lee et 
al., 2012; Arge et al., 2010, 2011), which can assimilate 
different observations into surface flux model and thus pro-
vide more instantaneous snapshots of the global photo-
spheric field distribution than traditional methods. The 
ADAPT model, together with high-quality observations 
from SOHO/MDI and SDO/HMI (Liu et al., 2012), will 
improve the input and results of the MHD simulations. 
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