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Abstract

Previous research has shown that the deflection of coronal mass ejections (CMEs) in interplanetary space,
especially fast CMEs, is a common phenomenon. The deflection caused by the interaction with background solar
wind is an important factor to determine whether CMEs could hit Earth or not. As the Sun rotates, there will be
interactions between solar wind flows with different speeds. When faster solar wind runs into slower solar wind
ahead, it will form a compressive area corotating with the Sun, which is called a corotating interaction region
(CIR). These compression regions always have a higher density than the common background solar wind. When
interacting with CME, will this make a difference in the deflection process of CME? In this research, first, a three-
dimensional (3D) flux-rope CME initialization model is established based on the graduated cylindrical shell (GCS)
model. Then this CME model is introduced into the background solar wind, which is obtained using a 3D IN
(INterplanetary) -TVD-MHD model. The Carrington Rotation (CR) 2154 is selected as an example to simulate the
propagation and deflection of fast CME when it interacts with background solar wind, especially with the CIR
structure. The simulation results show that: (1) the fast CME will deflect eastward when it propagates into the
background solar wind without the CIR; (2) when the fast CME hits the CIR on its west side, it will also deflect
eastward, and the deflection angle will increase compared with the situation without CIR.

Unified Astronomy Thesaurus concepts: Solar coronal mass ejections (310); Corotating streams (314); Solar wind
(1534); Magnetohydrodynamical simulations (1966)

1. Introduction

Coronal mass ejection (CME) is a phenomenon caused by
intense solar activity that erupts a huge amount of plasma and
magnetic flux from the corona in a short time. A CME will
destroy the steady flow of solar wind when it enters
interplanetary space. It is considered to be the main source of
disastrous space weather phenomena such as the geomagnetic
storm, when the CME hits Earth (Gosling et al. 1990). It has
been generally believed that the CMEs, which erupt toward
Earth from the solar source regions, will travel along the Sun–
Earth line and reach Earth (Howard et al. 1982). However, only
a part of such CMEs arrive at Earth and get observed. On the
other hand, some CME events that are not erupting in the face
of Earth are found to reach Earth (Wang et al. 2004).

The CME deflection was proposed as a probable reason to
explain the phenomena above. After erupting from the Sun, a
CME can be deflected from its original direction for many
reasons. One of the reasons is the effect of the corona, where
the magnetic field dominates the dynamic process. The
asymmetry of magnetic field structure can make the CME
deflect, which has been proven and widely studied (e.g., Gui
et al. 2011; Shen et al. 2011a; Wang et al. 2011; Zhou &
Feng 2013; Kay et al. 2015, 2016). Another kind of possible
deflection occurs in the interplanetary when the CME interacts
with other structures. A typical example is the effect of other
CMEs (Gopalswamy et al. 2001; Lugaz et al. 2012; Shen et al.

2012a). Moreover, a single CME in interplanetary space may
also be deflected due to the influence of the background solar
wind (e.g., Wang et al. 2004, 2014). And this kind of kinetic
model for CME deflection in the interplanetary space (DIPS)
was put forward by the study of Wang et al. (2004), which
suggested that a fast CME would always be blocked by the
background solar wind and deflected to the east, while a slow
one would be pushed and deflected to the west when
propagating in the interplanetary space freely. The background
mass and magnetic field will accumulate at the leading flow,
which makes the total pressure rise in the west front of CME
and finally causes the deflection. Manchester et al. (2017)
mentioned both the CME deflection in the corona and in the
heliosphere, and attributed this to two primary causes: magnetic
forces produced by the background corona and the background
solar wind flow pattern.
In order to study the CME deflection more effectively and

gain more useful information, we can use magnetohydro-
dynamic (MHD) modeling as a feasible and efficient method.
The propagation of CME and its driven shock in the
heliosphere have been studied by some researchers using
MHD simulation (e.g., Manchester et al. 2004b; Lugaz et al.
2005; Chané et al. 2006; Shen et al. 2014). Furthermore, the
deflection and interaction of CMEs also have been studied by
MHD modeling. For instance, Zhou & Feng (2017) have
shown the CME deflection caused by the influence of
heliospheric current sheet (HCS) using a 3D MHD model.
Their research suggests that CMEs tend to deflect to the HCS in
the latitudinal direction near the Sun and then propagate almost
parallel to the HCS in the interplanetary space. Lugaz et al.
(2005) has simulated the interaction of two CMEs from the Sun

The Astrophysical Journal, 887:150 (10pp), 2019 December 20 https://doi.org/10.3847/1538-4357/ab543e
© 2019. The American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-4935-6679
https://orcid.org/0000-0002-4935-6679
https://orcid.org/0000-0002-4935-6679
mailto:fshen@spaceweather.ac.cn
mailto:fshen@spaceweather.ac.cn
mailto:fshen@spaceweather.ac.cn
http://astrothesaurus.org/uat/310
http://astrothesaurus.org/uat/314
http://astrothesaurus.org/uat/1534
http://astrothesaurus.org/uat/1534
http://astrothesaurus.org/uat/1966
https://doi.org/10.3847/1538-4357/ab543e
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab543e&domain=pdf&date_stamp=2019-12-17
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab543e&domain=pdf&date_stamp=2019-12-17
http://creativecommons.org/licenses/by/3.0/


to Earth, including their magnetic structure, density, energetics,
and kinematics in the interplanetary space. Shiota & Kataoka
(2016) simulated a series of CMEs with internal spheromak-
type magnetic fields. They discovered that one of the CMEs is
strongly deflected by the inhomogeneous background solar
wind caused by other CMEs that erupted before. Similar
research on the interplanetary coupling between multiple
magnetic clouds (MCs)/CMEs has been numerically studied
by Xiong et al. (2007, 2009), including direct collision and
oblique collision. Shen et al. (2011b, 2012b, 2013) also studied
the collision and interaction between two CMEs in the
heliosphere with a 3D time-dependent numerical MHD model.

When simulating CME propagation, it is very important to
choose a suitable CME initialization model. In previous years,
the cone model was widely used. This model represents CME
as a hydrodynamic pulse of velocity (e.g., Odstrcil &
Pizzo 1999). The problem with the cone model is that it does
not contain a description of the magnetic field of CME. The
plasma blob model proposed by Chané et al. (2005) has also
been used by many authors (e.g., Shen et al. 2014). Although
this is an extremely simple model describing the CME as a
plasma blob with high density, high velocity, and high
pressure, it is magnetized with an initial magnetic field.
Additionally, a kind of spheromak CME model was developed
and studied by several research groups (e.g., Vandas et al.
1997, 1998, 2002; Gibson & Low 1998; Manchester et al.
2004a, 2004b, 2014a, 2014b; Lugaz et al. 2005). This kind of
model is characterized by its special magnetic field structure,
which is described as a spirally twisted toroidal flux rope
confined within a sphere. In this work, we try to introduce the
graduated cylindrical shell (GCS) model into our MHD
simulation acting as the CME initialization model. The GCS
model is an empirical model presented by Thernisien et al.
(2006) to describe the flux-rope structure of some CMEs. The
model contains a 3D flux-rope morphological structure and
expands in a self-similar form. The GCS model is also called a
“hollow croissant” because of its characteristic shape: it looks
like a curved tubular shell with two thin ends and a thick
middle. It has been frequently used to study the morphology,
position, and kinematics of CMEs in the
coronagraph observation (e.g., Liu et al. 2010; Lynch et al.
2010; Poomvises et al. 2010; Patsourakos et al. 2010).

A corotating interaction region (CIR) is the result of spatial
variability in coronal expansion and solar rotation. There are
solar wind flows of different speeds in the interplanetary space.
When fast solar wind catches up with slow solar wind ahead, it
will form a compressive interaction region where the density of
particles is increased at the front and relatively sparse at the
rear. If this kind of regions are roughly time-stationary and
corotate with the Sun, then they will be called the CIRs
(Gosling & Pizzo 1999). Compared with the common back-
ground solar wind, CIR has lower velocity and higher particle
density. Because of its specificity, the interaction between
CME and CIR may be different from that between CME and
general background solar wind. Although a lot of works related
to the CME deflection have been done at present as mentioned
above, there are still few researches which focus on the CME
deflection caused by CIR. The main reason may be the lack of
direct observation and research related to CIR. So in this work,
we will try to make a preliminary study of the interaction
between them through numerical simulation.

In Section 2, we give a brief introduction of our simulation
method, including the ideal MHD equations, grid system, and
boundary conditions. The three-dimensional (3D) flux-rope
CME initialization model based on the GCS model will also be
introduced in this section. The result of our simulation is given
in Section 3, as well as the analyses. In Section 4 we
summarize the paper and provide a discussion.

2. Numerical Simulation Method

2.1. Background Solar Wind

In order to study the propagation and deflection of the CME
in the ambient solar wind, a 3D solar wind background is
needed. We construct the solar wind background by solving the
ideal MHD equations with the TVD-Lax–Friedrichs (TVD-LF)
scheme. The ideal MHD equations in a rotating spherical
coordinate system (r, θ, f) can be written as
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where ρ, V, p stand for density, velocity and pressure of the

plasma, respectively; B stands for the magnetic field vector; I


is the unit tensor; Ms is the mass of the Sun;
w w w= - ´ ´ + ´f r V2[ ( ) ] is the centrifugal force in

the rotating coordinate system and ω=2π/T, where the T
represents the solar rotation period of 24.47 days (Shen et al.
2018).
The computational domain covers 21.5Rs�r�244Rs,

−90°�θ�90° and 0°�f�360°. Here the grid mesh is
built in the form of 224(r)×180(θ)×360(f). The mesh is
uniform in the longitudinal and latitudinal directions with
Δθ=1° and Δf=1°; in the radial direction, the grid size
gradually varies from about 0.37Rs at the inner boundary of
21.5Rs to 2.28Rs at the outer boundary near 1 au. Compared
with the common spherical coordinate mesh system, here we
use a more complicated mesh system that is composed of six
component meshes (Feng et al. 2010). The six components are
identical and partially overlap on their boundary to form a
complete sphere. The main reason for using this mesh system is
to avoid the problem of computational efficiency decline
caused by the coordinate singularity of the polar region.
The Carrington Rotation (CR) 2154 is chosen for back-

ground establishment. In this CR, there are three obvious CIRs
on the ecliptic plane and the distance between two of them is
relatively large. When a CME is propagating in the region
between the two CIRs, it can be influenced by only one of
them. This is convenient for us to observe and study.
First, we use the potential field source surface (PFSS) model

to extrapolate the coronal magnetic field from the photospheric
magnetic field provided by the Global Oscillation Network
Group (GONG) project. Actually, we do not calculate the

2
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coronal region in the simulation of background solar wind
because the inner boundary of our model is set at 0.1 au from
the solar center. Here we calculate the coronal magnetic field to
obtain the parameters fs and θb on the source surface, which are
necessary configuration parameters of our model. fs is the
expansion factor, which is defined as:
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where Bs and Bss are the magnetic field strength on the
photosphere and on the source surface, respectively; Rs and Rss

are the radius of the Sun and of the source surface,respectively.
qb is the minimum angular distance from the footpoint of the
magnetic field line at the Sun’s surface to the nearest coronal
hole boundary.

Then we can initialize the distribution of the solar wind
velocity at the inner boundary (21.5Rs) with the distribution of
fs and θb on the source surface according to the Wang–
Sheeley–Arge (WSA) empirical model. The empirical formula
of the WSA model can be written as (Arge et al. 2003):
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where Vs means the slowest solar wind speed and Vf is the
fastest speed; a1 to a4 are free parameters to adjust the solar
wind speed in the model. The velocities in the longitudinal and
latitudinal directions (Vf and Vθ) are assumed to be zero. There
are eight free parameters, including Vs, Vf, a1 to a4, fs and θb,
which can be adjusted to set different inner boundary
conditions for different periods (Shen et al. 2018). Figure 1
shows the distributions of radial velocity and radial magnetic
field strength on the inner boundary during CR 2154 that we
have built. The inner boundary is given in a fixed way that
depends only on the initial parameters and does not change

with time; the outer boundary satisfies the nonreflecting
boundary condition.
In order to avoid the numerical reconnection of the

interplanetary magnetic field in the simulation, we only retain
the intensity of the magnetic field and set the direction of all the
magnetic fields in the positive direction when we initialize the
interplanetary magnetic field, namely, all the magnetic lines are
directed outward. This approach should be reasonable because
even if we retain the positive and negative polarities of the
interplanetary magnetic field, we can still select the regions
with the unidirectional magnetic field for simulation
experiments.
To avoid the accumulation of the  B· error and keep the

physical law of  =B 0· during the calculation, here we use
a diffusive approach to control it. The  B· error can be
diffused away by iterating as follows at each timestep:

m= + D +B B Bx 7n n n1 2( ) · ( )
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in the spherical coordinate system and n is the number of
iterations; the value of μ is set to be 0.3 (e.g., Shen et al.
2014, 2018).

2.2. CME Initialization

2.2.1. Geometric Parameter

The GCS model was developed by Thernisien et al. (2006)
to describe the 3D shape and structure of CMEs. The model
consists of two main parts: two conical legs and a curved front.
The schematic of this model is shown in Figure 2(a): the origin
O is the vertices of the two conical legs, which is set as the
center of the Sun; the bottoms of the two cones are connected
with the curved front. The cross section of the model is a group
of circular annuli with gradually varying radii. The geometric
relationship of the varying radius a could be given by

k=a r r 8( ) ( )

where r is the distance from a point on the shell to the center of
the Sun; κ is called the aspect ratio of the model by Thernisien
et al. (2006, 2009). The angle between the axis of two conical
legs is 2αand the height of the cone is h. So the model is
described in a self-similar way and we can completely define
the geometry of the shell with three parameters κ, α, and h.
The geometric parameters of the model can also be fully

solved and expressed by κ, α, and h. Arc (C) is a circle arc in
the plane (O, x, y) with its center at B(0, b, 0) and its radius
r = BD intersecting the y-axis at A, as shown in Figure 2(b)
with the dashed arc line. According to the geometrical
relationship:

a=b h cos 9( )

r a= h tan . 10( )

The cross section of the shell in the plane (B, BG, z) according
to the definition, where C is the center and R is the radius of the

Figure 1. Radial velocity distribution based on the WSA model (top) and the
radial magnetic field distribution according to the PFSS model (bottom) on the
inner boundary.
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circle. The radius R can be expressed as
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where β is the angle between vector BG and x-axis. The
detailed deduction can be found in Thernisien (2011).

Since R is a function of parameters h, α, and κ, the geometry
of the front part has been defined. Combining with the
geometry of conical legs, we can completely define the
geometry of the whole GCS model by parameters h, α, and
κ. Furthermore, we get the expression of the trajectory of the
cross-section centers, which is the axis of the model, which is
shown in Figure 2(b) with the dotted arc line.

2.2.2. Physical Parameters

After getting the geometric description of the model, we will
discuss about the determination of its physical parameters in
this subsection. Here we define the magnetic field distribution
of our model based on the flux-rope model that Lundquist
proposed (Lundquist 1951). It is a force-free solution given in
cylindrical coordinate (r, f, z) as
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where J1 and J0 are the first-order and zero-order Bessel
function, respectively; σh=±1 is the helicity sign, which
stands for the helical direction of the magnetic field; α is the
force-free parameter; Bmax is the maximum of the magnetic
field. When r=0, here comes

= =J J1, 0 130 1 ( )

so the magnetic field intensity reaches the maximum on the
axis of the cylinder where r=0. We make a standard
assumption that the axial component of the magnetic field
comes to be zero at the edge of the flux rope, i.e., the first zero

of J0 should occur when r=R, and R stands for the radius of
the cylindrical shell. And easily we can get

a »R 2.405 14( )

as proposed by Dasso et al. (2006); the maximum of magnetic
field Bmax of a Lundquist flux rope is written as

p
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Hm is the magnetic helicity of the Lundquist flux-rope and L is
the flux-rope length, which can be written as

w= -L H R2 17front front( ) ( )

where ω is the half-angular width of the GCS model, and Hfront

and Rfront are the maximum height and maximum radius of the
front.
Here we consider a limiting case of the model. Set α=δ,

then the inner sides of the two cones coincide at the y-axis, and
there is no gap between the two conical legs. The point B
becomes the center of the model, such that the plasma
parameters of the CME can be defined around the center B
like a plasma blob model (e.g., Chané et al. 2005; Shen et al.
2011b, 2011c, 2012b, 2013); but at the same time, we keep the
magnetic field structure as a flux rope. The initial density,
velocity, and temperature of the point P in CME are given as
follows:
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Figure 2. Face-on schematic of the graduated cylindrical shell model. (a): the framework (Figure 1(a) in Thernisien et al. 2009). The dashed–dotted line is the axis of
the flux-rope model; the dotted line of a circle is the cross section of the shell model; hfront is the height of the whole model. (b): the schematic of the detailed geometric
parameter (Figure 1(a) in Thernisien 2011). The dashed circle arc (C) is the generating line of the front part of the model; the dashed–dotted line above is the trajectory
of the centers of the model sections, and the point C is both on this trajectory and on the same line with the vector BG.
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At the front part, r is the radius of the cross section at the
point, and d stands for the distance to the center point B; at the
part of the conical legs, r still represents the radius of the cross
section, but d is defined as the distance to the inner side of the
cone in the cross-section plane. ρmax, Vmax, and Tmax are the
maximum density, radial velocity, and temperature of
the CME.

The total density, radial velocity, and temperature of the
CME area can be written as:

r r r= +

= +
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T T T
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where ρ0, V0, and T0 stand for the density, radial velocity, and
temperature of the background solar wind, respectively.

3. Simulation Results and Analysis

3.1. Propagation and Deflection of the CME

To obtain the steady background used in our simulation we
first run the code without initializing the CME. After about
200 hr of the computing time, the physical parameters of the
background solar wind do not change anymore and come to a
steady state. The distributions of density and velocity on the
ecliptic plane in this state are shown in Figure 3. After
stabilization, the flow field and magnetic field of the whole
background become spiral. We can see three distinct compres-
sion regions in Figure 3, where the plasma density is higher and
the radial velocity is lower.

With the increase of radial distance, the density of the
background solar wind decreases rapidly, such that the density
distribution in the whole interplanetary space spans several
orders of magnitude. If the density distribution is plotted into a
figure directly, the difference of density in the radial direction
will be much larger than that in the longitudinal direction. In
order to show the compression structure in longitudinal
direction better, we need to change the form of the density
before we show it in a figure. We transform the density N into

N
*

in the following way:

=N N
r

R215
20

s
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*
⎛
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⎞
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where r stands for the radial distance. With this method, the
attenuation of density due to the increase of radial distance will
be reduced and the difference in longitudinal direction will be
shown more clearly.
We then start initializing and adding the CME model at the

longitude of −40°, where its launch direction will be very close
to the CIR. The geometric parameters and the physical
parameters of the CME are shown in Table 1. The values of
α and δ in the model are set to be equal as mentioned above, so
there is no gap between the two conical legs of the CME. The
shape of the CME looks like a slightly stretched plasma blob
model, in which the distribution of density, velocity, and
temperature in the middle part are higher than that near the
edge, and the magnetic field of the CME maintains a flux-rope
structure. A schematic graph of the magnetic field structure of
the initialized CME is shown in Figure 4. The shape of the
magnetic field is like a twisted and curved tube.
For convenience, we rotate the whole background around the

Z-axis by 40° so that the projection point of CME will always
lie in the direction of f=0, that is, along the positive direction
of the X-axis. This ensures that, no matter what projection angle
CME is initialized at, the region of CME propagation is
roughly in the same direction, which is convenient for
observation and comparison. The image of the propagation
process of the CME on the ecliptic plane (plane X–Y) is shown
in Figure 5. Since the CME has a much higher speed than the
CIR, it soon catches up and hits the CIR on its west side after
the propagation starts. At the front of CME’s forward direction,
there is an obvious shock structure. On the side of their contact,
intense compression and interaction occur between them. The

Figure 3. The distribution of density (left) and velocity (right) on the ecliptic plane. The density here is transformed according to the radial distance.

Table 1
Initial Parameters of CME

r -kg mmax
3( )

Vmax

(km s−1) Tmax (K) H Mxm
2( ) h Rs( ) α(°) σ(°)

1.15×10−18 1200 6×106 1.0×1042 25 20 20
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whole process looks like the CME is expanding, moving along
the CIR and interacting with it. It can be seen from the three
panels on the top of Figure 5, as the CME moves along the
CIR, the density of CME increases on its northwest side. This
increase is becoming more and more evident over time.
Comparing with the three panels on the bottom, the high-speed
part of the CME is mainly located on the east side of the high-
density part and becomes more and more eastward. Intuitively,
it looks like the high-density part of the interaction area makes
the direction of the high-speed part of the CME gradually
deflect eastward.

Assuming that the CME’s initial launched direction is
toward Earth, we can see the relationship between the locations
of Earth and the CME during the propagation from Figure 5.
Figure 6 shows the temporal profiles of plasma parameters at
the Earth for 60 hr. This figure shows that the CME arrives at
Earth about 29 hr after the CME launches. A sudden change
can be seen in the magnetic field intensity, velocity, and
density, which means that the shock reaches Earth. Before the
shock arrives, there is a period for about 18 hr (shown in gray
in Figure 6), in which some parameters start to change. The
density slowly rises to a significant peak of about 20 cm−3, and
the radial velocity of the solar wind rises from 400 to over
600 km s−1. But these changes are not as sudden as the shock;
they are more gradual and gentle. This period indicates the
process through which Earth passes through the CIR.

3.2. Determination of CME Location and Direction

Here we determine the CME region using the relative density
increment σ, which is defined as

s
r r
r

=
-

. 210

0

( )

ρ0 is the density of the background solar wind before the CME
is added; ρ is the density when the CME is added and
propagating. If the σ of a point is larger than 25%, we assume
that the point belongs to the CME region. Considering only the
data on the ecliptic plane, we can determine a series of points

influenced by CME according to the relative density increment,
then the location and direction of the CME can be described
numerically with these points.
As mentioned above, the CME spreads outward and expands

at the same time during its propagation, so we will give a brief
way to describe the position of the whole CME. Observing the
shape of the CME from Figure 5, we can see that the CME
front is like a part of a circle in the ecliptic plane. Therefore, in
this study, we assume the CME to be a circle shape in the 2D
graph briefly, and call it the CME circle. A schematic image of
the definition of the CME circle is shown in Figure 7.
In order to represent the CME with a circle, we need to know

the direction and size of the CME. The CME front is chosen to
determine the direction of the CME, and it is defined as: the
point in the CME with the largest radial distance from the Sun.
To prevent the fluctuation of the coordinates, here we use a set
of points instead of just one point to represent the CME front.
Therefore, we select the points with the top 20% of the largest
heliocentric distance from the sequence of CME points
determined by relative density increment, and calculate their
coordinates as the following to indicate the position of the
CME front:
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where (xi, yi) is the coordinates of the selected top 20% of the
points, and (xf, yf) is the calculated coordinate of the CME
front.
Usually, the direction of the CME refers to the longitude

direction of its geometric center or the center of mass (e.g.,
Lugaz et al. 2005; Shen et al. 2011b, 2012b; Shiota &
Kataoka 2016; Zhou & Feng 2017). The main reason we do not
use these methods to represent the direction of the CME here is
to avoid the interference of incorrect statistical methods on the
judgment of the deflection. When CME is interacting intensely
with CIR, the plasma between them is compressed, and the
density of plasma in this area rises. A number of points
belonging to the CIR meet the condition of the relative density
increment larger than 25%, but in fact they are not a part of the
CME. We note that some superfluous and unnecessary points
may be counted into the CME in this way. Therefore, errors
would occur if all the points that satisfy the relative density
increment conditions are used to calculate the position and the
direction of the CME. The center of gravity of the CME
calculated directly will be closer to the CIR side than its actual
location, as well as the propagation direction, which will
interfere with our judgment of the deflection of the CME.
Since it is difficult to distinguish the points between CME

and CIR only by the relative density increment near the
interaction region, we change the way to define the direction
and the location of the CME: instead of using all the points, we
choose only part of them, which are far from the region of
interaction. Furthermore, the choice of CME front as the
direction of CME is not only because we cannot use all the
points on both sides of CME, but also because it can well
represent the direction of CME during the propagation. The
point with the greatest distance from the Sun shows that it has
the greatest integral of radial velocity during the whole
propagation. It can well represent the expansion direction of
the CME, that is, the propagation direction of the CME at the
moment.

Figure 4. Schematic of the magnetic field structure of the initialized CME at
t=0 hr. The background section is the ecliptic plane.
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The size of the CME is determined by its front position and
the easternmost point. First, connect the CME front that we
have defined above with the location of the Sun, i.e., the origin
of the coordinate, as represented by the dashed red line OA in
Figure 7. Then, find the easternmost point of the CME on the
ecliptic plane and make a straight line through it from the origin
of the coordinate, as represented by the red solid line OB in
Figure 7. Finally, we can draw a circle that passes point A, with
its center lying on OA, and make it tangential to the line OB at
the same time. In this way, the location and the size of the CME
are determined by the CME circle.

3.3. Analysis of the Deflection

Using the definition of the CME location and direction
mentioned above, the deflection of the CME in the longitudinal
direction during the propagation is calculated, as shown in
Figure 8(a). When the CME arrives near the Earth, its direction
shifts to the east by over 10°. The trajectory of the CME is
expressed in Figure 8(c) by a series of CME circles with a time
interval of 3 hr.

Although the result of our simulation shows that the CME is
deflected significantly, it is important to note that the method
we have used to define the deflection is asymmetric. This
approach of using only one side of the CME data may lead to
systematic errors. Considering this, here we present a
comparative example to eliminate system errors. We launch
another CME with exactly the same parameters except for its
launch position and propagation condition. This CME is

launched at the longitude of −70°, which is in the middle of
two CIRs. Since the region between the west and east CIRs is
wide enough, this CME will not interact intensely with the
CIRs and can almost expand freely during the propagation. Its
deflection will be calculated in the same asymmetric way. By
comparing the result with the former CME, we can distinguish
whether there are obvious systematic errors.
Similarly, we graph the position and direction of the CME

circle under this condition in Figure 8(b). Compared with
Figure 8(a), we can clearly see that the CME deflection is much
smaller under this condition, which is only about 5° near Earth.
The trajectory of the CME in this case is shown in Figure 8(d)
with the same time interval of 3 hr.
The DIPS model suggests the relationship among the

background solar wind speed, the CME speed, and the
deflection angle is

fD =
-

Wt
V V

V
t 23rsw

sw
( ) ( )

whereΔf(t) is the deflection angle of the CME, Vsw is the solar
wind speed, and Vr is the CME radial speed; Ω is the rotation
speed of the Sun (Wang et al. 2014). The solar wind speed and
the CME radial speed here are assumed to be constant. From
the velocity distribution in Figure 3, we can take 720 km s−1 as
the average speed of the solar wind in the CME propagation
region. The average radial speed of the CME can be calculated
by its total propagation distance and total propagation time. In
this case, the propagation distance of the CME is about 165Rs,

Figure 5. (a)–(c): density distributions on the X–Y plane at different times during the CME propagation. (d)–(f): radial velocity distributions on the X–Y plane. (a) and
(d) last occur at 10 hr; (b) and (e) occur at 22 hr; (c) and (f) occur at 34 hr. The small red circle is the position of Earth.
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i.e., 1.15×108 km when the propagation time is about 35 hr,
i.e., 1.26×105 s. So the average radial speed of the CME is
calculated to be about 910 km s−1. Then the deflection angle at
35 hr can be estimated to be about 5.66° by Equation (23). To
compare with the deflection angle in our simulation directly,
this result is also added to Figures 8(a) and (b) (as red dashed
lines).

As can be seen from the above, the modeled deflection angle
of a fast CME propagating freely to 1 au in the background
solar wind is about 5°, which is consistent with the DIPS
model. When the same CME interacts with CIR, the deflection
angle increases to more than 10° for the same propagation
distance. The main difference in the CME propagation process
between the above two cases is whether there is a significant
interaction with CIR. And we can see from the density image in
Figure 5 that the interaction between CME and CIR is so
intense that even the shape of CIR is seriously affected.
Therefore, the interaction with CIR should play an important
role in the increase of the deflection angle of CME.

4. Summary and Discussion

In this work, we have numerically investigated the
propagation and deflection of the fast CME in the interplane-
tary space. Considering whether the CME interacts with the
CIR or not, we have analyzed the difference between these two
cases, including their deflection angle and trajectory. The CR
2154 is chosen for our study because the interplanetary solar
wind configuration has several distinct CIRs and is suitable for
our simulation and comparison. A steady-state interplanetary
background solar wind is established by a 3D IN-TVD-MHD
model first. Then we established a CME initialization model
based on the GCS model. Two CMEs based on this model are
put into the background for comparison. Their initial geometric
and physical parameters are identical; however, their launching
locations are different. One of them interacts with CIR during
the propagation, while the other does not. Finally, their
location, trajectory, and deflection are analyzed.
Our simulation results show that a fast CME propagating in

the interplanetary solar wind always deflects to the east. If the
CME has an average speed of 910 km s−1, its deflection angle
is about 5° when it arrives near the Earth orbit (1 au). If a fast
CME with the same initialization parameters interacts with the
CIR ahead, it will be deflected to the east too. However, the
deflection is more significant compared with the one that
propagates freely. When it travels with the same average speed
of 910 km s−1, the deflection angle can be over 10° near 1 au.
From the comparison between these two cases, we demonstrate
that the deflection of the CME is quite different, with different
background conditions.
We know that in the corona, the magnetic energy always

plays a dominant role in the CME’s dynamic process, while in
the interplanetary space, the magnetic field is much weaker and
the velocity of the CME is much higher, therefore the dynamic
energy of the CME is predominant. In our work, the
interplanetary propagation of CME is focused, so we tend to
look for an explanation for this phenomenon from the view of
density and pressure.

Figure 6. Profiles of plasma parameters at Earth for 60 hr after the launch. The
red line indicates the time when the CME arrives at Earth; the gray areas
indicate the time when Earth is passing through the CIR.

Figure 7. Schematic of the CME circle, which is shown as a red circle in the
figure; O is the location of the Sun; A is the point of CME front we defined; B is
the easternmost point of the CME.
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From the view of the DIPS model, the deflection angle was
determined by the difference between the CME velocity and
background solar wind velocity. However, the essence of this
view is that the velocity difference would make the plasma
accumulate on one side of the CME and then causes the total
pressure on this side to rise. And it is this imbalance of pressure
that causes CME to deflect. Similar views have been proposed
by Wang et al. (2004), and they think that the leading flow
would has a “block” effect on the fast CME. So does it in our
cases: during the propagation of a fast CME, the interplanetary
plasma and magnetic field will accumulate at its west side; the
density at the west side will increase as well as the total
pressure; the rising pressure at the west causes the CME to
deflect eastward. As can be seen clearly in Figures 5(a)–(c),
there is a marked increase of density in the region contacted
with CIR on the west side of the CME, which is shown in red
color in the figure. Compared with other regions in the
background solar wind, the CIR has higher density and lower
speed. This makes the mass accumulation more, and causes the

pressure to rise more in this region. The more pressure rises at
the west side, the greater the deflection. Thus, the deflection
angle is larger when the CME interacts with CIR.
As mentioned above, our simulation mainly focuses on the

propagation and deflection of CME in the interplanetary, so the
inner boundary, where the CME is launched, is located at
0.1 au. Thus, the GCS model cannot connect directly to the
Sun. Two magnetic field legs of the flux-rope structure, which
are supposed to come from the solar surface, are cut off by the
inner boundary. After we initialize the CME model, it will
propagate in the background solar wind, where the magnetic
field is going outward in a single direction. Because of the
absence of two legs connected to the solar surface, it is hard to
keep such a curved shape, which is like a hollow croissant. The
whole magnetic field structure of the model will soon be
influenced by the background magnetic field configuration.
Although the structure of the twisted magnetic field could be
retained, the overall shape of the flux-rope will gradually be
straightened by the background magnetic field. This may lead

Figure 8. (a) and (c): temporal images of the CME’s deflection angles and the trajectories of the CME circle, respectively, for the case when the CME interacts with
the CIR. (b) and (d): images for the case when the CME does not interact with the CIR. (a) and (b) are shown in the heliocentric Earth ecliptic coordinate system, while
(c) and (d) are in rotating coordinates. The green line is the longitude of the Earth; the blue dashed line is the CME direction of our simulation; the red dashed line is
the CME direction predicted by DIPS model. The time interval for each CME circle in (c) and (d) is 3 hr.
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to the partial distortion of the CME’s magnetic field
configuration.

In our future work, the corona regions will also be included
in the research. The interaction between CME and other
structures in the corona, mainly the magnetic field structure will
be simulated, and the deflection of CME in the corona region
will be studied. Moreover, we will try to simulate the real CME
deflection event with the influence of CIR structure by using
more observational data collected by, e.g., from Parker Solar
Probe and Solar Orbiter, in the future.

The synoptic magnetogram data in this work are obtained
from the Global Oscillation Network Group (GONG) of the
National Solar Observatory. The numerical calculation has
been completed on TianHe-1 (A) at the National Super-
computer Center in Tianjin, China. We acknowledge their use.
This work is jointly supported by grants from the National
Natural Science Foundation of China (41474152, 41531073,
41731067, 41774184, and 41974202) and the Specialized
Research Fund for State Key Laboratories. F.S. is also
supported by the National Program for Support of Top-notch
Young Professionals.
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