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This paper presents an improved space-time conservation element and solution element (CESE) method by applying a 
non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it to magnetohy-
drodynamics (MHD) equations. The improved CESE method can improve the solution quality even with a large disparity in 
the Courant number (CFL) when using a fixed global marching time. Moreover, for a small CFL (say < 0.1), the method can 
significantly reduce the numerical dissipation and retain the solution quality, which are verified by two benchmark problems. 
And meanwhile, comparison with the original CESE scheme shows better resolution of the improved scheme results. Finally, 
we demonstrate its validation through the application of this method in three-dimensional coronal dynamical structure with di-
pole magnetic fields and measured solar surface magnetic fields as the initial input. 
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The space-time conservation element and solution element 
(CESE) method, originally proposed by Chang (1995) and 
Chang et al. (1994, 1999), is a powerful numerical frame for 
solving conservation laws. This method is non-conventional 
by differing substantially from other well-established finite 
difference methods. The CESE method has many non-  
traditional features, including (1) a unified treatment of 
space and time, (2) introduction of conservation element 
and solution element for space-time flux conservation at 
interfaces, and (3) flow variables and their spatial deriva-
tives as independent time-marching variables. The method-
ology consistently conforms to the conservation nature of 
the fluid physics, which conserves space-time fluxes both 
locally and globally in the solution domain. This character-
istic can reduce the potential solution error when a 

non-conservative numerical method is applied. To date the 
CESE method has seen its great success in studying flows 
with moving and steady shocks, acoustic waves, complex 
vertical flows, detonations, shock/acoustics/vortices interac-
tions, dam-break flows, solar wind, etc. (Chang et al., 1994, 
1999; Wang et al., 1995, 1999; Zhang et al., 2006; Feng et 
al., 2006, 2007, 2010; Qamar et al., 2010). 

The original CESE scheme that in two space dimensions 
strictly requires the use of structured/unstructured triangular 
meshes has been extended by Zhang et al. (2003, 2006) for 
the numerical solution of the ideal magnetohydrodynamics 
(MHD) equations using quadrilateral meshes. But the nu-
merical dissipation associated with the CESE scheme in-
creases as the Courant number (CFL) decreases. As a result, 
for a small CFL number (say < 0.1), a CESE scheme may 
become overly dissipative. And, in a case with a large CFL 
number disparity, the solution obtained by the CESE 



154 Zhou Y F, et al.   Sci China Earth Sci   January (2014) Vol.57 No.1 

scheme can be subjected to severe numerical dissipation in 
a region where the local CFL number is far less than	1. This 
is caused by large grid-size disparity or small time step size 
(Yen et al., 2005, 2006; Venkatachari et al., 2008). In tran-
sient MHD simulations, the values of local CFL number 
may vary sharply across the computational domain using a 
fixed marching time step size. As a result, these values may 
range from its maximum stability bound, i.e., 1, to a far less 
than the value of 1, where the CESE method can become 
very dissipative. In order to overcome this disadvantage, 
Courant number insensitive scheme (CNIS) (Chang et al., 
2003; Yen et al., 2005, 2006; Venkatachari et al., 2008) has 
been proposed to improve the solution quality, which can 
decrease numerical dissipation through improving the pro-
cedure for calculating the spatial derivatives. 

In solar wind simulations, the grid points are accumulat-
ed heavily near the Sun due to the spherical shell geometry 
of the computational domain, and the plasma flow and 
magnetic field vary over many orders of magnitude in the 
solar-terrestrial space. This implies a large variation of the 
CFL stability limit from the corona to interplanetary space. 
Typically, the MHD time step is 1–3 s in the corona by the 
CFL criterion, and it will be 100–300 s in interplanetary 
space. If one uniform time step in the entire solar-terrestrial 
domain is applied, such distributions of mesh grids and 
physical parameters lead to a huge disparity in CFL across 
the mesh. Thus, making the numerical solution less insensi-
tive to variation in CFL is necessary to get rid of the exces-
sive numerical dissipation caused by small CFL and achieve 
a higher numerical accuracy.  

In this paper, we propose an improved CESE scheme. 
The improved scheme can enhance the solution quality in a 
flow simulation with a large disparity in the CFL, and de-
crease numerical dissipation and retain the solution quality 
even if CFL is less than 0.1. Moreover, it is simple and easy 
to program, and does not need to improve the procedure for 
calculating the spatial derivatives. The original CESE 
scheme applied a staggered space-time mesh. In this im-
proved scheme, we use a non-staggered space-time mesh. 
For verifying the accuracy, resolution, and efficiency of the 
improved scheme, we simulate two 2D benchmark prob-
lems, and conduct a comparative study between the im-
proved CESE scheme and the original CESE scheme. Fi-
nally, we apply this method to simulate the three-dimen- 
sional coronal dynamical structure using dipole magnetic 
fields and measured solar surface magnetic fields as the 
initial input. 

1  Numerical methods 

In this section, we describe the improved CESE scheme on 
a two dimensional structured mesh, and it can decrease nu-
merical dissipation and enhance the solution quality. The 
scheme can easily be extended to three dimensions and it 

could also be extended to unstructured meshes. The exam-
ples presented in the next section include two-dimensional 
benchmark test cases and three-dimensional coronal dy-
namical structure. Here, we will not introduce three-dimen- 
sional scheme. 

1.1  Review of the CESE method 

As a preliminary, we briefly review the existing 2D CESE 
method for the ideal MHD equations. In two spatial dimen-
sions, the MHD equations can be cast into the following 
conservative form: 
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where U is the vector of conserved variables, F and G are 
the conservation flux vectors in the x and y directions re-
spectively. These vectors are 

 
T

T
1 2 3 4 5 6 7 8

( , , , , , , , )

( , , , , , , , )

x y zu v w e B B B

u u u u u u u u

   



U
 

 

1
2 2

0 2

3

4

0 5

6

7

8

( ) ,
( ) (u B)

0

x

x y

x z

x

y x

z x

u f
u p B f

uv B B f

uw B B f

e p u B f

f

uB vB f

fuB wB







   
       
   
   

            
   
      

     

F U  

 

1

2
2 2

0
3

4

50

6

7

8

( ) .
( ) (u B)

0

y x

y

y z

y

x y

z y

v g
vu B B g

v p B g
vw B B g

ge p v B

gvB uB
g

gvB wB








                                            

G U  (2) 

Here, ρ and p are density and gas pressure, respectively; u = 
(u, v, w) and B = (Bx, By, Bz) are velocity components and 
magnetic field components in the x, y, z directions, respec-
tively. The specific total energy e and the total pressure are 
e = p/(γ − 1) + ρu2/2 + B2/2 and p0 = p + B2/2, respectively. 

In the following, we will briefly illustrate the CESE 
method based on the regular quadrilateral meshes in a two- 
dimensional space. For more detailed derivation, the reader 
can refer to Zhang et al. (2002). Let (x, y, t) be the coordi-
nates of a three-dimensional Euclidean space E3. By using 
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Gauss’s divergence theorem in the space-time E3, it can be 
shown that eq. (1) is equivalent to the following integral 
equations: 

 
 

d 0, 1,  2, 8,m

S V

h S m      (3) 

where m indicates the number of equations, hm = (fm, gm, um), 
S(V ) is the boundary of an arbitrary space-time region V in 
E3. And hm · dS is the space-time flux hm leaving the region 
V through the surface element dS, where dS = dσn with dσ is 
the area of a surface element on S(V ), and n is the outward 
unit normal to S. 

We firstly divide the x-y plane into non-overlapping uni-
form quadrilaterals and any two neighboring quadrilaterals 
share a common side (Figure 1(a)). The centroid of each 
quadrilateral is marked by either a hollow circle or a solid 
circle. Point Q, marked by a solid circle, is the centroid of a 
typical quadrilateral B1B2B3B4, and is also the centroid of 
polygon A1B1A2B2A3B3A4B4, which coincides with quadri-
lateral A1A2A3A4. The points Aℓ, ℓ = 1, 2, 3, 4, marked by 
hollow circles, are the centroids of the four quadrilaterals 
neighboring to the quadrilateral B1B2B3B4, respectively. At 
each grid point, we construct one conservation element (CE) 
and one associated solution element (SE). The CE(Q) of 
point Q is defined to be the hexahedron A1A2A3A4A′1A′2A′3A′4. 
The SE(Q) of point Q is defined as the union of the three 

plane segments 1 1 3 3 ,B B B B    2 2 4 4 ,B B B B    and A1A2A3A4 

and their immediate neighborhoods, see Figure 1(b). Let n 
be the index for t, for a given n > 0, Q, Q′, and Q″, respec-
tively, denote the points at the time level n, n − 1/2, and n + 
1/2 with point Q (see Figure 1(b)) being their common spa-
tial projection. 

The solution of (um)Q can be obtained by solving the 
MHD equations on conservation element and solution ele-

ment defined above. Following Chang’s original approach 
(Chang et al., 1995, 1999), for any (x, y, t)∈SE(Q), *

mu (x, y, 

t), *
mf (x, y, t), and *

mg (x, y, t), respectively, are approxi-

mated by the first-order Taylor series 
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where xQ, yQ, and tn are the space-time coordinates of point 
Q, and m stands for fm or gm. By using chain rule, we have 
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where ,( )m Q   is the element of the Jacobian matrices of . 

It is similar for ( )my Q  and ( )mt Q . To proceed, by em-

ploying eq. (1), we have 
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As a result, the flow variables (um)Q and their spatial gradi-
ents (umx)Q and (umy)Q are the independent unknowns to be 
solved in the CESE method. Once these three variables are 
calculated, the flow solution structure inside the SE is com-
pletely determined. 

Thus, the space-time flux conservation, eq. (3) can be 
approximated by its discrete counterpart on conservation 
element: 

 *

( )
d 0.m

S CE
h S   (7) 

 

 

Figure 1  Space-time geometry of the CESE method. (a) Representative grid points in an x-y plane; (b) the definitions of CE and SE. 
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Then, substituting eqs. (4), (5) and (6) into eq. (7), we ob-
tain the following equation: 
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where Sℓ, and (xℓ, yℓ, tn−1/2) denote the areas and the coordi-
nates of the centroids of the neighbor quadrilaterals, respec-

tively. Thus, 
4
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respectively, denote the length, the unit outward normal, 
and the coordinates of the midpoint of the spatial projection 
of the (k, ℓ) side face which represents the eight side faces of 
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respectively. 
A central difference type reconstruction approach is em-

ployed to calculate (umx)Q and (umy)Q, see Zhang et al. (2002) 
and Qamar et al. (2010). Using the Taylor series expansion 
in time only, we can obtain 
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Similarly, by using solutions at (A2, A3, Q), (A3, A4, Q) and 
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weighting average, we can obtain the final flow variable 
gradients (umx)Q and (umy)Q at Q, i.e., 
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where α is an adjustable constant (usually α = 1 or α = 2). 
To avoid dividing by zero, in practice a small positive 
number such as 10−60 is added to the denominators that ap-
pear in eq. (12a) and (12b). 

1.2  The improved CESE scheme 

Although the original CESE scheme is very successful in 
solving the above MHD equations, there is still room for 
improving the CESE method. For example, the numerical 
dissipation increases as the CFL number decreases. As a 
result, for a small CFL number (say < 0.1), the original 
CESE scheme may become overly dissipative. And when a 
globally fixed time step is used in a case with a large CFL 
number disparity, the CESE scheme can become very dis-
sipative in a region where the local CFL number is far less 
than 1. In order to overcome this weakness, in this subsec-
tion, we propose an improved CESE scheme, which can 
enhance the solution quality even in a flow simulation with 
a large disparity in the CFL, and significantly decrease nu-
merical dissipation and retain the solution quality even if 
CFL is less than 0.1. To proceed, we firstly propose the 
non-staggered extension of the original CESE scheme in the 
following. 

The original 2D CESE scheme is based on struc-
tured/unstructured staggered space-time meshes. Wang et al. 
(1999) extended the 2D CESE scheme for unstructured tri-
angular meshes using the non-staggered version. In this 
paper, we extend the original 2D CESE scheme to the case 
of regular quadrilateral non-staggered space-time meshes. 
In a manner similar to the case in Wang et al. (1999), the 
non-staggered mesh can be obtained by overlaying two pre-
vious staggered meshes. The calculation of um in the 
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non-staggered extension is the same as the original CESE 
scheme, and a similar statement does not hold. 

Previously in the original CESE scheme, at one time lev-
el, assume the solutions at solid circles are obtained by us-
ing the hollow circles, and at the next time level, the solu-
tions at hollow circles are obtained by using the solid circles. 
The non-staggered extension of the original staggered 
CESE scheme can be made in the following manner. At 
time tn−1/2, assume the data are known at both solid and hol-
low circles. At time tn, obtain the solutions at solid circles 
by using the hollow circles, and the solutions at hollow cir-
cles by using the solid circles. Thus for the non-staggered 
extension, as the solutions at the all meshes at time tn have 
been obtained, the values of the derivative at time tn can be 
straightly obtained by eq. (12), and do not need the Taylor 
series expansion in time by eq. (10). Such a calculation of 
derivatives umx and umy is simpler. The key difference be-
tween the extension and the original CESE scheme is that 
the all meshes can be simultaneously computed in the 
non-staggered extension. 

To reduce numerical dissipation for the original CESE 
scheme when CFL is small, we propose an improved CESE 
scheme based on the non-staggered extension by employing 

a start-off value σ. The quantity 1mR  in eq. (8) is replaced 

by   1 2
1 1 .n

m mR u     The resulting eq. (8) becomes 
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(13) 

where σ represents the local grid CFL number at Q. For 
calculating the local CFL number σ, we use a simplified 
grid CFL calculation as proposed by Yen et al. (2006). As 
the solutions at point Q and its surrounding points at time tn 
have been obtained, the two spatial derivatives (umx)Q, and 
(umy)Q can be straightly obtained by eq. (12), which do not 
need to calculate the values of the surrounding points at 
time tn by Taylor series expansion in time. Thus the combi-
nation of eq. (13) and eq. (12) constitutes the improved 
CESE scheme. 

2  Results and discussion 

In this section, in order to test the improved CESE scheme, 
two benchmark test cases, including isentropic stationary 
vortex and Orszag-Tang MHD turbulence, are chosen to 
simulate, and the comparison with the original CESE 
scheme is also made. To illustrate the application of the 
improved CESE method to stead-state coronal structure, 
three-dimensional coronal dynamical structure with dipole 
magnetic fields and measured solar surface magnetic fields 
as the initial input is simulated and presented herein. In the 
following numerical examples, we choose the adjustable 

constant α = 0 for the first example and α = 1 for the other 
examples. 

2.1  Isentropic stationary vortex problem 

The first numerical test is a 2D isentropic, stationary vortex 
embedded in a static environment (Yee et al., 1999). The 
benchmark test case is often used to assess the numerical 
dissipation error of numerical methods. Similar test cases 
have also been used by several authors for testing other 
schemes (Gottlieb et al., 1976; Davoudzadeh et al., 1995). 
In this test case, two velocity components (u, v) and tem-
perature (T) are perturbed by the following values: 
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2 8
r ru v y x T
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where β is the vortex strength, x0 and y0 are the initial coor-
dinates of the vortex center, and γ = 1.4. The computational 
domain is (x × y)∈[0, 50] × [−5, 5], and two quadrilateral 
meshes (401 × 81 and 801 × 161) are used. The vortex is 
placed at the center of the rectangle, (25, 0). Periodic 
boundary conditions in both directions are used for this case. 
For this calculation, the global CFL number is set to a fixed 
value 0.8. 

In order to assess order of accuracy of the present meth-
od for the smooth flows, the case is run on a sequence of 
successively finer uniform grids. The computed solutions 
are compared with the exact solution in order to calculate 
the L1 error norm. The resulting area-averaged L1 error 
norm at t = 100 is shown in Figure 2. The quantity N in the 
figure is the number of points in the y directions for the 
corresponding uniform mesh. When the grid size is doubled, 
the error norm decreases by roughly a factor 13 or better. 
This error norm confirms that the present method converges 
approximately at a four order rate for smooth solutions. 
Although not shown here, the original CESE scheme pro- 
duces similar error norm convergence to the present  

 

 

Figure 2  Convergence of error norm versus number of points for isen-
tropic stationary vortex problem. 
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scheme. 
In order to compare the original CESE scheme and the 

improved CESE scheme, the two approaches are evaluated 
in this study. Density profiles at the centerline, y = 0, cutting 
through the center of the vortex of the two schemes are used 
for comparison. Figure 3 shows the density profiles across 
the vortex at the centerline, y = 0, at t = 50 and 100 for the 
two schemes. Data on the centerline are extracted up to 5 
unit lengths away to the left and the right, from the location 
of the center of the vortex. The solid lines represent the ex-
act solution. The results show that the original CESE 
scheme gives some dissipation error near the center of the 
vortex for the coarser mesh at t = 50, and the fine quadrilat-
eral mesh has minor dissipation error. At a later time t = 100, 
the computed vortex core of the original CESE scheme is 
even more diffused compared with the exact solution. The 
results of the improved CESE scheme match well with the 
analytical solution. For the fine mesh, the results of the im-
proved CESE scheme have almost not diffused the vortex 
core, and all numerical solutions fall almost on top of the 
exact solution. Anyway, the improved CESE scheme exhib-
its better resolution than the original CESE scheme. The 
results further suggest that the improved CESE scheme ap-
pears to perform much better than the original scheme for 
this case. 

2.2  The Orszag-Tang MHD turbulence problem 

In this problem, we consider the evolution of a compressible  

MHD vortex system by Orszag et al. (1979). It contains 
many significant features of MHD turbulence and has been 
studied by many previous investigators (Zhang et al., 2006; 
Qamar et al., 2010; Jiang et al., 2010). The computational 
domain in this case is (x, y)∈[0, 2π] × [0, 2π] with periodic 
boundary on all four sides. We use a uniform mesh of 200 × 
200 grid nodes. The initial data are 
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where γ = 5/3. The global CFL number is set to 0.8. 
The Orszag-Tang vortex problem starts from smooth ini-

tial data, but gradually the flow becomes very complex as 
expected from a transition towards turbulence. Figure 4 
shows the pressure contours of the present CESE results at 
t=0.5, 2 and 3, respectively. To assess the accuracy of the 
present results, the employed contour levels are exactly the 
same as that used by Jiang et al. (1999), i.e., 12 equally 
spaced contour levels ranging from 1.0 to 5.8 for t = 0.5, 
from 0.14 to 6.9 for t = 2, and from 0.36 to 6.3 for t = 3. 
From the results, we can see that there is no obvious differ-
ence between the present results and Jiang and Wu’s results 
by side-by-side comparisons. 

To test solution accuracy, the numerical errors at t = 3 
are also calculated. Since the exact solution is not known, a 
high resolution numerical solution is used as a basis for  

 

 

Figure 3  Comparison of the two methods with the exact solution, illustrated by density profiles at the centerline y = 0, at t = 50 and t = 100 for 401×81 
grid and 801×161 grid. (a) The original CESE scheme; (b) the improved CESE scheme. 
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Figure 4  Pressure contours of the Orszag-Tang vortex problem by the improved CESE scheme. (a) Pressure contours at t = 0.5; (b) pressure contours at t = 
2; (c) pressure contours at t = 3. 

comparison. Here, the reference high resolution solution is 
obtained with the original CESE scheme on an N × N =  
800 × 800 grid. Figure 5 shows the computed L1 error norm 
versus number of points used. The quantity N in the figure 
is the number of points in both the x and y directions for the 
corresponding uniform mesh. From the rate of change of the 
curve, the solution is approaching three orders. 

For a comparison of the two schemes: the original 
scheme and the improved scheme, the qualitative differ-
ences in resolution can be appreciated in the gray scale im-
ages of pressure at t = 3 in Figure 6. The right of the figure 
is the reference high resolution numerical solution on an   
N ×N = 800×800 grid via the original CESE scheme. The 
other two plots are results of two schemes with 200 × 200 
resolution. Only the left of the computational domain is 
shown since the right half is symmetric to the center point  
x = y = π. The figure shows that the result of the improved 
CESE scheme is obviously sharper than that of the original 
CESE scheme. The improved CESE scheme shows clearly 
the sharp dark feature between x = y = 1 and x = 0.5, y = 2, 
which is obvious in the high resolution solution. But the 
feature is obscure in the solution from the original CESE 
scheme owing to the numerical dissipation. 

 

 

Figure 5  L1 error norm versus grid resolution for the Orszag-Tang MHD 
turbulence problem. 

For quantitative details of the calculated results, Figure 7 
shows the pressure profiles along the line of y = 0.625 at 
time t = 0.5, 2 and 3, calculated by using the two schemes. 
The solid line represents the reference high resolution solu-
tion. At time t = 0.5, the flow is still quite smooth, and no 
discontinuities are present. There is no difference between 
the results of the two schemes and the reference high reso-
lution solution. When calculated to t = 2, the result by the 
improved scheme shows a more pronounced gradient near  
x = 0.3 and x = 3.5, where obvious shock waves have been 
generated as the vortex system evolving (Figure 4(b)). At 
near x = 5.5, it can be seen that the improved scheme solu-
tion agrees well with the high resolution solution. However, 
the original CESE scheme solution shows deviation. At t = 
3, when discontinuities and complicated flow interactions 
have formed, some differences could be discerned between 
x = 0.5 and x = 1. The result of the improved scheme is 
much closer to the high resolution solution, which has been 
mentioned above. Small differences could also be discerned 
at near x = 1.6 and x = 4.4, where strong shock discontinui-
ties formed (Figure 4(c)), and the results of the original 
scheme are much smoother than that of the improved 
scheme due to the numerical dissipation. From these results, 
we found that the improved scheme can indeed enhance the 
accuracy of the solution. Due to the use of uniform grids, 
benefits of the improved scheme over the original scheme 
are not evident here. 

To contrast the dissipative character at low CFL condi-
tion (say < 0.1), we calculate this case with CFL=0.08. Fig-
ure 8(a) and (b) shows the pressure contours of this prob- 
lem solved by these two methods with CFL=0.08 at t = 3. 
The employed contour levels are also exactly the same as 
that used by Jiang et al. (1999). Figure 8(c) shows the cor-
responding pressure profiles of the two schemes along the 
line of y = 0.625. The solid line also represents the refer-
ence high resolution solution, which is the same as that of 
the previous paragraph. From the results shown, it is clear 
that the original CESE solutions deteriorate quickly and do 
not capture the shock effectively when the global CFL  
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Figure 6  The pressure distribution in the Orszag-Tang vortex problem. The two schemes are computed at a 200 × 200 resolution. (a) The original CESE 
scheme; (b) the improved CESE scheme. The reference high resolution solution (c) is computed on an 800×800 grid. 

 

Figure 7  Pressure profile of the Orszag-Tang vortex problem along line y = 0.625. (a) Pressure profile at t = 0.5; (b) pressure profile at t = 2; (c) pressure 
profile at t = 3. 

number is less than 0.1. The solutions of the present method 
are still quite accurate even if CFL number < 0.1. The ad-
vantage of the present method over the original CESE 
method is overwhelming. 

2.3  Three-dimensional steady state solar wind simula-
tion using dipole magnetic field as an input 

In this subsection, a benchmark example of a three-dimen- 
sional steady state coronal atmospheric problem is chosen 
by using dipole magnetic field as an input. This particular 
problem has been solved by many different methods; it al-
lows us to test the newly improved scheme. The time-  
dependent MHD simulation code used in this section is sim-
ilar to that described in Feng et al. (2007), in addition to the 
improved CESE scheme instead of the original CESE 
scheme. To initiate this numerical experiment, we choose a 
dipolar magnetic field and Parker’s solar wind solution 
(Hundhausen et al., 1972) as the input. The dipole magnetic 
field is given by 
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where Rs is the solar radius, and B0 is the constant magnetic 
strength. The plasma beta is defined as β = 16πnkT /B2, with 
k being Boltman constant. In this paper, we numerically test 
the present method for β = 0.1. The temperature and proton 
number density at the inner boundary are typically taken to 
be 1.8 × 106 K and 1 × 1014 m3. The specific heat ratio γ is 
assumed to be 1.05. The computational domain covers  
−90°≤θ≤90°, 0°≤φ≤360°, and 1Rs≤r≤30Rs. The  
details of computing the background solar wind were  
given by us (Hundhausen et al., 1972) and thus are omitted 
here. 

We numerically test the present method. After we input 
the chosen magnetic field and Parker’s solar wind solution 
(Hundhausen et al., 1972), we run the numerical code with 
the use of 20 MPI processes and allow it to reach a 
steady-state solution at the physical time 100 h via the re-
laxation technique (Steinolfson et al., 1982). The present 
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Figure 8  (a) and (b) Pressure contours of the Orszag-Tang vortex problem by the two schemes; (c) pressure profile of the Orszag-Tang vortex problem 
along line y = 0.625 (CFL number= 0.08). 

method takes about 35 h of wall time to obtain the 
steady-state solution. But its runtime is approximately 1.6 
times as that of the original CESE method; this is caused by 
computational cost due to non-staggered extension and the 
grid CFL calculation. However, for a higher accuracy of the 
solution, the cost is worth it. Figure 9 depicts a two-dimen- 
sional (2-D) cut through the 3-D steady-state model in the 
meridional plane close to the Sun. The false color image 
indicates the radial speed of the plasma whereas the mag-
netic field is represented by solid black lines. The magnetic 
field remains closed at low latitude close to the Sun forming 
a streamer belt. At high latitude, the magnetic field is car-
ried out with the solar wind to achieve an open configura-
tion. 

Figure 10 shows the profiles of proton number density, 
and the radial velocity vs. heliocentric distance at two dif-
ferent latitudinal angles: θ = 88° and θ = 2°, which corre-
spond, respectively, to the open field and current sheet re-
gion. The black lines represent the results of the present 
method. From these results, we recognize that the proton 
number density decreases with increasing of heliocentric 
distance, becoming smaller toward the polar region. This 
picture agrees with the observed magnetic field topology of  

 

Figure 9  Magnetic field and radial speed for the steady state solar wind 
solution from 1Rs to 20Rs. The color contours represent the radial speed 
and streamlines denote the magnetic field lines. 

a coronal streamer at solar minimum (Sheeley et al., 1997). 
This configuration is due to the interaction between the 
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Figure 10  (a) Radial velocity profiles vs. heliocentric distance at two different latitude θ = 88° and θ = 2° and (b) the corresponding number density distri-
butions. The black lines represent the results of the present method, and the red lines denote the results of the original CESE method. 

magnetic field and Parker’s radial solar wind solution. We 
also show that the radial velocity is higher at the polar re-
gion and increases in the radial direction. All these charac-
teristics are consistent with previous solutions (Steinolfson 
et al., 1982; Wang et al., 1993; Zhang et al., 1993). The 
density structure in our simulation qualitatively agrees both 
with the fact that coronal streamer centers are formed 
around the solar equator, and with the MK III observations 
of coronal polarized brightness near solar minimum 
(Biesecker et al., 1999). The radial profile of bulk speed is 
not exactly consistent with measurements of flow speeds in 
the corona between 2 and 22 Rs (Sheeley et al., 1997), and 
this is because the polytropic calculation yields a rather 
slow bulk flow. 

In order to make comparison between the present method 
and the original CESE method, we also run this case using 
the original CESE method. The results of the original CESE 
method are showed in Figure 10 by red lines. From these 
results in Figure 10, we found that the radial velocity of the 
present method is higher than that of the original CESE 
method at the open field region, and the radial velocity dif-
ference of the present method is greater. These are caused 
by the numerical dissipation of the original CESE method 
with the disparity in grid CFL number when using a fixed 
global marching time. From the Sun to 20Rs, where the so-
lar wind flow is essentially superfast (hence super-Alfvénic), 
the plasma flow and magnetic field vary over many orders 
of magnitude. Such distributions of physical parameters 
lead to a huge disparity in grid CFL from the Sun to 20Rs 
when using one uniform time step. For example, when 
reaching the steady state, from the Sun to 20Rs, the local 
grid CFL can range from 0.8 to less than 0.01 in the simula-
tion. 

2.4  Three-dimensional coronal streamer structure 
simulation using measured photospheric magnetic field 
as an input 

After three benchmark tests, we are ready to construct the 
approximate, realistic three-dimensional coronal atmos-

pheric solutions to test the present numerical scheme. The 
prescribed initial magnetic field is based on measurements 
of the solar surface together with a potential field model. 
The measured photospheric magnetic field for Carrington 
rotation 1922 from the Wilcox Solar Observatory at Stan-
ford University (http://wso.stanford.edu/synoptic.html) is 
used as the initial boundary condition to deduce a 
three-dimensional global potential magnetic field. We input 
this three-dimensional magnetic field model into the nu-
merical code together with the assumed plasma properties 
(number density and temperature) and Parker’s solar wind 
solution to allow the numerical code to arrive at a qua-
si-equilibrium solution via the relaxation method. In order 
to obtain a reasonable agreement with observed solar wind 
velocity, the heating form as in Zhou et al. (2012) is used 
here. The specific heat ratio γ is assumed to be 1.46. 

In the following, we present the 3D numerical results of 
structured solar wind for CR 1922. Figure 11 shows the 
magnetic field lines and radial velocity on two different 
meridional planes. The figure shows that the magnetic field 
is characteristic of the heliospheric magnetic field during 
periods of solar minimum. At high latitudes, the magnetic 
field lines are carried out with the solar wind to form coro-
nal holes of high speed. However, at lower latitudes around 
the equator, the magnetic field lines remain closed close to 
the Sun forming a streamer belt. Above the streamer, we 
can see a thin current sheet between different magnetic po-
larities. This scenario of the helmet streamer-current sheet 
system is consistent with those depicted by Pneuman et al. 
(1971) and Gosling et al. (1981). Inspection reveals a bi-
modal outflow pattern with slow wind leaving the Sun be-
low 400 km s−1 near the equator and high-speed wind above 
600 km s−1 found above 30 latitude. 

Figure 12 displays the space weather background synop-
tic maps for the MHD steady-state solution on the different 
solar surfaces at 2.5Rs and 20Rs. This configuration is due to 
the interaction between the magnetic field and Parker’s so-
lar wind flow field. Quantitatively, N and T decrease with 
heliocentric distance while Vr increases. The flow in the 
polar regions is faster than that near the equatorial regions, 
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Figure 11  Magnetic field and radial speed for the steady state solar wind solution on the meridional planes at φ= 180°–0° andφ= 270°–90° from 1Rs to 
20Rs. The color contours represent the radial speed and streamlines denote the magnetic field lines. 

and the heliosphere current sheet (HCS) region is sur-
rounded by higher N. By examining the number density and 
velocity at 2.5Rs and 20Rs, we found that these values of the 
number density are of the same order of magnitude as those 
results shown in Figure 1 of Wei et al. (2003) for the aver-
aged distribution of the solar plasma number density n on 
the surface at 2.5Rs, estimated from K coronal brightness 
during the Carrington rotations 1733–1742 in 1983, and the 
radial velocity at 2.5Rs is consistent with the averaged dis-
tribution of solar wind speed on the surface at 2.5Rs calcu-
lated from the mapping of interplanetary scintillation data 
during the Carrington rotation 1733–1742 in 1983, and also 
with results using data for Carrington rotation 1742 in 1983 
in a special MHD method by Wei et al. (2003). Meanwhile, 
we noticed that the low-density regions have higher radial 
speed, which indicates that there exists a north polar coronal 
hole, a south polar coronal hole, and an equatorial struc-
tured distribution as a function of heliographic longitude. In 
a word, the numerical results for CR 1922 exhibit many 
properties typical of coronal atmospheric observations near 
solar minimum. The magnetic field strength falls off along 
with heliocentric distance, but less than the potential field 
model, which is proportional to 1/r2. 

Figure 13 displays the radial velocity, and number den-
sity profiles along heliocentric distance at two different lat-
itudes: θ = 88° and θ = 2° at the same longitudeφ= 0°, 
which corresponds, respectively, to the open field and the 
current sheet region. Evidently, we have a high-speed and 
low-density stream in the polar region. At 10Rs and above, 
the flow is super-Alfvénic and supersonic nearly every-
where and changes very little. However, a low speed and 
high-density flow is present in the current sheet region and 
the velocity agrees with the profile of low solar wind speed 
(Sheeley et al., 1997). Figure 14 shows the meridional pro-

files of the radial velocity, number density, radial magnetic 
field, and temperature atφ= 0°. 

In this paper, our results indicate that this model matches 
many features of the corona (as shown above) through con-
sidering an additional coronal heating input related to the 
expansion factor. So far the entire scenario for the coronal 
heating/solar wind acceleration is still unknown. To further 
understand this problem, more observations of multiple 
spacecraft (such as SDO, STEREO, SOHO, ACE, Wind, or 
other future missions) will probably help us develop the 
ability of including physically realistic coronal heating 
modules into 3D MHD codes; actually there have been 
many 2D counterpart studies using somewhat-physically- 
based coronal heating and wind acceleration mechanisms in 
the literature (e.g., Chen et al., 2001; Hu et al., 2003; Li et 
al., 2004). And more observations of multiple spacecraft 
can also help us improve the determination of the structure 
of the ambient solar wind, and further numerically charac-
terize the 3D propagation of CMEs through the heliosphere. 
This point is left for future consideration. 

3  Conclusions 

In the study, an improved CESE scheme is proposed and 
applied to MHD equations. The improved CESE scheme 
can enhance the accuracy of the solution with a large dis-
parity in the grid CFL when a globally fixed time step is 
used. Moreover, the scheme can significantly reduce the 
numerical dissipation and retain the solution quality when 
CFL number is less than 0.1. The present scheme is very 
simple and easy to program. In order to construct the pre-
sent scheme, we firstly extend the original CESE scheme, 
which is based on staggered space-time meshes to the case 
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Figure 12  Contours of MHD steady-state solution on the difference surface at 2.5Rs (left column), 20Rs (right column). The top panel denotes radial mag-
netic field Br with units Gauss, and 10−6 T from left to right; the second panel is the radial speed with units km s−1; the third panel displays the number den-
sity with units 106 cm−3, and 104 cm−3 from left to right; the bottom panel stands for temperature with units 106 K. 

of non-staggered space-time meshes. Based on the non- 
staggered extension, we propose the improved CESE 
scheme. In the present scheme, at the new time, we obtain 
the solutions at all meshes using the data at the previous 
time. Meanwhile, the derivatives calculation is simplified, 
which does not need to calculate the value at neighbor 
meshes using the Taylor series expansion. 

Generally, a careful control of numerical dissipation is a 
necessity for an accurate and stable steady simulation, as 
well as for an unsteady simulation, but it is difficult to 
properly control numerical dissipation. Although one can 

increase the numerical dissipation rather easily for a nu-
merical scheme, it is much harder to reduce it when accu-
racy is required. Though the original CESE scheme can 
reduce numerical dissipative scheme with the adjustable 
constant α, it may become very dissipative when CFL is 
small. Here, the improved scheme makes it easier to reduce 
numerical dissipation. 

For verifying the accuracy, and efficiency of the present 
scheme, firstly two 2D benchmark problems are simulated, 
including isentropic stationary vortex and Orszag-Tang 
MHD turbulence problem. Solution accuracy of this present 
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Figure 13  Profiles of the radial velocity, and number density at two locations with different latitude θ = 88° and θ = 2° at the same Carrington longitudeφ
= 0°. 

 

Figure 14  Profiles of the radial velocity, number density, radial magnetic field, and temperature at 20Rs andφ= 0°. 

scheme has been validated by investigating the error norm 
convergence for the two benchmark problems. Meanwhile, 
we conduct a comparative study between the improved 
CESE scheme and the original CESE scheme. From the two 
tests above, numerical results verify that the improved 
CESE scheme can reduce the numerical errors and enhance 
the solution quality due to CFL disparity. A comparison 
with the original CESE scheme shows better resolution of 
the present scheme results. From the second test, we found 
that the original CESE scheme is overly dissipative when 
CFL number is less than 0.1, but the improved CESE 

scheme can still retain the solution quality. 
For its application to the solar wind simulation, we also 

apply this improved CESE scheme to the steady state solu-
tion of the solar coronal streamer structure using the 1D 
Parker solar wind solution together with a dipole field to-
pology and measured photospheric magnetic field as an 
initial condition. The result shows that a reliable numerical 
solution for a 2D steady state coronal structure with solar 
wind can be obtained, as verified by observations near solar 
minimum (Sheeley et al., 1997; Biesecker et al., 1999). In 
particular, the numerical results shown for 3D steady state 
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structure for CR 1922 exhibit many properties typical of 
coronal atmospheric observations near solar minimum and 
provide us with strong confidence in the current MHD code. 
To this extent, we conclude that this present scheme has 
been validated by the tests performed for 2D and 3D cases. 
Further improvement and application of this scheme to 
model disturbance propagation in the corona and in inter-
planetary space and other astrophysical MHD flow prob-
lems are left for future work. 
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