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In this paper, an implicit dual-time stepping scheme based on the finite volume method in spherical
coordinates with a six-component grid system is developed to model the steady state solar wind. By add-
ing a pseudo-time derivative to the magnetohydrodynamics equations for the solar wind plasma, the
governing equations are solved implicitly at each physical time step by advancing in pseudo time. As a
validation, ambient solar wind for Carrington rotation 2048 has been studied. Numerical tests with dif-
ferent Courant factors show its capability of producing structured solar wind and that the physical time
step can be enlarged to be one hundred times that of the original one. Our numerical results have demon-
strated overall good agreements with the observations.
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1. Introduction

Over the last few decades, numerical simulations of the solar
wind plasma flow have evolved from a topic only addressed in
basic research toward a promising tool used for space weather pre-
diction. Today’s maturation of computational magnetohydrody-
namic (MHD) dynamics has enabled us to numerically capture
the basic structures of the solar wind plasma flow and transient
phenomena such as the solar wind background and coronal mass
ejections (CMEs) [1]. Of course, besides the numerical aspect,
numerical space weather modeling depends heavily on the under-
standing of the fundamental physics processes, such as the coronal
heating/solar wind acceleration, initiation of solar eruptions like
CMEs, which will benefit from further theoretical investigation,
and spacecraft observation. This rapid development of numerical
space weather modeling can be attributed to both the achievement
of efficient solution algorithms and the continuous increase in
available computational power. With today’s level of maturity in
numerical algorithms, it is tempting to assume that further pro-
gress in the applicability of numerical methods may be guaranteed
by solely relying on the sustained development of computer tech-
nology. However, since the relevant problem size will continue to
increase as fast as available hardware permits, a number of severe
challenges in the development of numerical methods for solar
wind plasma flow simulation remain. Globally, without going into
detail, these challenges may be summarized by the terms
efficiency, robustness, and accuracy, as usually met in other com-
putational fields [2,3].

The MHD description governs the large-scale dynamics of solar
wind plasmas. Mathematically, ideal MHDs form a hyperbolic par-
tial differential equation (PDE) system, in which seven waves
appear, labeled as entropy, forward and backward slow, forward
and backward Alfvén, and forward and backward fast families,
which all behave anisotropic. The associated seven wave speeds
are the local velocity, v, and the sets are v � vSlow; v � vAlfven;

v � vFast, where vSlow denotes slow magnetoacoustic speeds, while
vFast indicates fast. Together with the Alfvén speed, vAlfven, they are
ordered since vSlow 6 vAlfven 6 vFast. Currently, many solar-
terrestrial physics phenomena that require the solution of a hyper-
bolic system of MHD equations involve vastly different physical
timescales and spatial scales. With respect to efficiency in the
numerical modeling of solar-terrestrial physics phenomena, one
of the major breakthroughs in numerical methods for MHD sim-
ulations was the introduction of adaptive mesh refinement [4–7],
and for the solution of the inviscid equations, numerical methods
may now be considered as fairly effective. However, we are still
frustrated by the inadequacy of today’s methods to efficiently take
into account the stiffness of the discrete system of equations. For
a stiffness discussion in fluid dynamics, we can refer to [2,8] and
references therein. For MHD equations, the same arguments hold.
Discrete stiffness can generally result from distinct sources due to
the use of a scalar time step, highly stretched computational
meshes, and/or other physics such as dissipative/heating processes
in the form of source terms. The scalar time step can fail to cope with
the disparity in the propagation speeds of convective and
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characteristic wave modes and the highly stretched computational
meshes can be required for economical resolution of the spherical
shell computational domain from solar corona to interplanetary
space. The discrete stiffness, provoked by the highly stretched
computational meshes, can be enhanced with the increase of the
corresponding high cell aspect ratios by several orders of magnitude
in large portions of the computational domain which results in
severe convergence problems and very high computation times,
particularly in solar wind simulation studies [3].

In general, the MHD equations of the solar wind plasma involve
a wide separation in timescales. The slow wave and Alfvén wave
only propagate in the direction parallel to the background
magnetic field whereas the propagation of the fast wave is nearly
isotropic [9]. Hence, the spatial resolution requirements perpen-
dicular to the magnetic field are much more severe than those par-
allel to the magnetic field, making the Courant–Friedrichs–Lewy
(CFL) condition associated with the fast wave much more
restrictive than that associated with the others; typically by two
or more orders of magnitude. Since the fast wave is the only one
that compresses the magnetic field, the fast wave sets the maxi-
mum allowable time step when using an explicit time advance. It
is generally believed that when the MHD equations are used to
study plasma phenomena occurring on time scales as short as
the transit time of a fast MHD wave, an implicit scheme removes
the numerically imposed time-step constraint allowing much lar-
ger time steps [9,10]. Besides implicit time integration, the use of
dual time stepping, allows, to some extent, the physical time step
to not be limited by the corresponding values in the smallest cell
and to be selected based on the numerical accuracy criterion [2].
The dual time step, which does not modify the original transient
evolution of the governing equation, adds a pseudo-time derivative
to the governing equation. It uses the pseudo-time steady-state
solution to approach the physical-time solution. A dual time
marching method for MHD-like equations has been used [11–15]
for the simulation of MHD phenomena.

The objective of the present paper is to explore an implicit dual
time-stepping method for 3D MHD studies of ambient solar
wind.The paper is organized as follows. In Section 2, the governing
MHD equations of the solar wind plasma in spherical coordinates
are briefly provided. In Section 3, the hybrid finite volume scheme
of combining the fluid part of the MHD equations and the con-
straint transport method for the magnetic induction part with dual
time stepping are described. In Section 4, the numerical results of
ambient solar wind for Carrington rotation (CR) 2048 with differ-
ent CFL numbers or Courant factors are presented. Finally, conclu-
sions are made.

2. Governing equations

The magnetic field, B ¼ B1 þ B0, is split into the sum of a time-
independent potential magnetic field, B0, and a time-
dependent deviation, B1 [16,17]. Here, B0 is a potential magnetic
field, and in the present paper it is taken as the initial value with
@B0
@t ¼ 0;r � B0 ¼ 0;r� B0 ¼ 0. We note that MHD equations can

be viewed as a combination of fluid dynamics coupled with mag-
netic fields. In the present paper, this physical splitting of the
MHD equations into fluid and magnetic parts [18,19] is
considered in order to design efficient finite volume (FV) schemes
with spatial discretization for the fluid equations and the magnetic
induction equation adopted from [20]. The fluid part of the vector,

U ¼ q;qvr ;qvh;qv/r sin h; e
� �T , reads as follows:
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where e ¼ 1
2 qv2 þ p

c�1þ 1
2 B2

1 corresponds to the modified total

energy density consisting of the kinetic, thermal, and magnetic
energy densities (written in terms of B1). q is the mass density,
v ¼ ðv r; vh;v/Þ are the flow velocities in the frame rotating with
the Sun, p is the thermal pressure, and B ¼ B0 þ B1 denotes the total
magnetic field consisting of the time-independent potential mag-
netic field B0 and its time-dependent derived part, B1. Since B0 is
constant with time, many terms near B0 on the right-hand side van-
ish. t and r are time and position vectors originating at the center of
the Sun. l ¼ 4� 10�7p is the magnetic permeability of free space,
g ¼ � GMs

r3 r is the solar gravitational force, G ¼ 6:673� 10�11 m3

s�2 kg�1 is the gravitational constant, Ms ¼ 1:99� 1030 kg is the
solar mass, and jXj ¼ 2p=26:3 rad day�1 is the solar angular speed.
In our code, we allow the ratio of specific heats, c, to vary from 1.05
to 1.5 along the heliocentric distance, r, according to [17], that is,
c ¼ 1:05 for r=Rs 6 5; c ¼ 1:05þ 0:03ðr=Rs � 5Þ for 5 < r=Rs 6 20,
and c ¼ 1:5 for r=Rs > 20.

The source terms, S ¼ ðS1; S2; S3; S4; S5ÞT , are generated from the
polar geometrical factors, the Coriolis, centrifugal, and gravity
forces, and volumetric heating source terms. Explicitly,

S¼

0

q
v2

h
þv2

/

r þ 2p
r þ

B2
1rþ2B1r B0r

rl �q GMs
r2 þqX sinhð2v/ þXr sinhÞ þ SM

S3;1 þqXcosð2v/ þXr sinhÞ
�2qXðvh coshþ v r sinhÞr sinh

qv r � GMs
r2 þX2r sin2 h

� �
þqvhX

2r sinhcoshþ SE þ vrSM

0
BBBBBBB@

1
CCCCCCCA

where

S3;1 ¼ pþqv2
/ þ

B2
1r þ 2B1rB0r þ B2

1h þ 2B1hB0h � B2
1/ � 2B1/B0/

2l

 !
coth

r

þ 1
r

B1hB1r þ B1hB0r þ B0hB1r

l
�qv rvh

� �

Here, SM and SE stand for the momentum and energy source terms,
which are responsible for the coronal heating and solar wind
acceleration. Following [17], the source terms SM and SE are given
as follows:
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where Q2 ¼ Q0Ca;M ¼ M0Ca, and Ca ¼ C0a=maxðC0aÞ with

C0a ¼
ð5:8�1:6e½1�ðhb=8:5Þ3 � Þ

3:5

ð1þf sÞ
2=7 . M0;Q0, and Q1 in this paper are given

as 7:9�10�14 Nm�3; 1:18�10�7 Jm�3 s�1; and 1:5�10�9 Jm�3 s�1,
respectively. LQ1 ;LQ2 ; and LM are set to be 1 Rs, and f s is the magnetic

expansion factor which reads f s¼ð1RÞ
2 BRs

BR
, where BRs and BR are the

magnetic field strength at the solar surface and at the heliocentric
distance R = 2.5 Rs. hb is the minimum angular separation between
an open magnetic field foot point and its nearest coronal hole
boundary. These momentum and energy source terms are
motivated by the Wang–Sheeley–Arge (WSA) model [21–23]. In
writing the governing MHD equations in spherical coordinates,
the geometrical curvature in spherical coordinates will turn out to
produce new terms in the momentum equations, whose discretiza-
tion must be accounted for and is discussed by [24]. Here, we
replace the momentum equation, qv/, with the angular momentum
equation, qv/r sinh, [24,25] such that the geometrical curvature
source term can be simplified for the /-momentum.

The subsystem for the magnetic induction part runs as follows:
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As usual, q;v; p;B ¼ B1 þ B0; r, and t are normalized by the char-
acteristic values qs; as;qsa

2
s ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lqsa2

s

p
;Rs and Rs=as, where qs; and as

are the density and sound speed at the solar surface.
The grid cell partition follows from the concept of a six-

component grid [7,17,24,26]. That is, the spherical shell
computational domain is divided into six identical component
meshes to envelope a spherical surface with a partial overlap on
their boundaries (Fig. 1), with each component grid defined in
the spherical coordinates by

p
4
� d 6 h 6

3p
4
þ d

� �
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4
� d 6 / 6

5p
4
þ d

� �
ð5Þ

where d is proportionally dependent on the grid spacing entailed for
the minimum overlapping area and is taken to be 2Dh. Each compo-
nent is confined to the same region as that in Eq. (5), but in different
spherical coordinates. Vectors can be transformed from each of the
six components to another [7,17,24,26]. The sliding cells, ði; j; kÞ, are
given by ½rim; rip� � ½hjm; hjp� � ½/km;/kp� with spacings of DrðiÞ ¼
rip � rim;DhðjÞ ¼ hjp � hjm, and D/ðkÞ ¼ /kp � /km. Corresponding
half-way indices defined by im ¼ i� 1=2ðjm ¼ j� 1=2; km ¼
Fig. 1. Grid cell geometry with six faces located at r ¼ rim; r ¼ rip ; h ¼ hjm; h ¼ hjp;/ ¼ /km;

six identical components with partial overlap (middle) and one-component mesh stacke
k� 1=2Þ and ip ¼ iþ 1=2ðjp ¼ jþ 1=2; kp ¼ kþ 1=2Þ mark the
bounding faces of the cell, ði; j; kÞ, where i ¼ 1; . . . ;Nr ,
j ¼ 1; . . . ;Nh; k ¼ 1; . . . ;N/. The grid mesh is generated as fol-
lows: rim ¼ rði�1Þp; rip ¼ rim þ DrðiÞ, hjm ¼ hðj�1Þp;hjp¼ hjmþDhðjÞ;/km¼
/ðk�1Þp;/kp¼/kmþD/ðkÞ with r1m ¼1RS;h1m ¼ p

4, and /1m ¼ 3p
4 . The

geometrical center of a cell, i; j;k, is denoted by ðri;hj;/kÞ with
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In order to mitigate this discrete or geometrical stiffness caused

by disparate mesh cell widths, the following grid partitions are
employed. For 1–25 Rs, Nh ¼ N/ ¼ 42;DrðiÞ ¼ 0:01 Rs if
rðiÞ < 1:1 Rs; DrðiÞ ¼minðA� log10ðrði� 1ÞÞ;Dh� rði� 1ÞÞ with
A ¼ 0:01=log10ð1:09Þ if rðiÞ < 3:5 Rs; DrðiÞ ¼ Dh� rði� 1Þ if
rðiÞ > 3:5 Rs. In the present work, the parallel implementation in
the whole computational domain of our simulated region from 1
Rs to 25 Rs is realized by a domain decomposition of six-component
grids based on the spherical surface and radial direction partition.

Within the six-component grid frame, we have two boundaries:
one is the inner boundary located at the solar surface, 1 Rs, and the
other is the outer boundary at 25 Rs. The inner boundary at 1 Rs is
fixed for simplicity. Since the outer boundary in interplanetary is
a supersonic/super-Alfvénic region, the solar wind parameters at
the outer boundary are set equal to the values at their nearest grid
points in the computational domain. In the six-component grid sys-
tem, a horizontal boundary in the ðh;/Þ directions exists at borders
in the overlapping parts, and the horizontal boundary or internal
border values of each component grid are determined by interpola-
tion from the neighbor stencils lying in its neighboring component
grid. The interpolation coefficients are derived by the corresponding
position of the boundary point in the stencils [17,26], the second-
order Lagrange polynomial interpolation is used for the fluid flow,
and the second-order reconstruction is used for the magnetic field.

As for the initial values, the magnetic field using the line-
of-sight photospheric magnetic data from the Wilcox Solar
Observatory is specified [17,24] to produce a 3D global magnetic
field in the computational domain with the potential field source
surface (PFSS) model. The initial distributions of the plasma
density, q, pressure, p, and velocity, v, are given by [27]. The
temperature and number density on the solar surface are
Ts ¼ 1:3� 106 K, and qs ¼ 1:5� 108cm�3.
3. Numerical integration formulation

Following [18,19], we designed an FV scheme for the governing
equations by splitting these equations into a fluid part (Eq. (1)) and
X
Y

Z

Y

Z

X

/ ¼ /kp , and the cell center at the point ðri; hj;/kÞ (left). The partition of a sphere into
d in the r direction (right).
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a magnetic induction part (Eqs. (2)–(4)). The fluid part leads to an
extended Euler system with magnetic forces as source terms. For
spatial discretization of our numerical scheme formulation, we
strictly follow those of [20] by using the FV discretization of Eq.
(1), and by averaging Eqs. (2)–(4) over facial areas to obtain the
semi-integral forms of the magnetic induction equations. We used
a semi-discrete Godunov-type central scheme for the Euler subsys-
tem. We adopt a second-order accurate linear ansatz reconstruc-
tion [20] for the fluid part, and in the linear reconstruction the
derivative terms at volume-averaged coordinates are approxi-
mated by using a minmod limiter for oscillation control. The mag-
netic induction equations are solved using the CT method. For
consistency, the reconstruction of the magnetic induction part is
also of second-order accuracy and cross derivative terms are
slope-limited approximations of the exact derivatives at the cell
face centers obtained using a minmod limiter. For details, refer to
[20,24].

The full system is integrated over time with a second-order
implicit Runge–Kutta scheme. Following the idea of [18,19], we
simultaneously or sequentially integrate the MHD equations in
time for the fluid part and the magnetic induction part. That is,
in order to obtain a scheme for the full MHD equations, we move
the discretized fluxes to the right-hand sides of Eqs. (1)–(4), and
denote them by their corresponding source terms as RU½U;B� and
RB½U;B�, respectively, and we can advance using the following
procedure:

U� ¼ Un þ DtRU½U�;Bn� ð6Þ
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step length is prescribed by the CFL stability condition:
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r
are the sound and Alfvénic speeds. Next, we

employ a simultaneous time integration with CFL = 0.5.
In this paper, an implicit dual time-stepping scheme is used to

simulate the solar wind to improve computational efficiency. A
pseudo-time derivative is introduced to the original implicit form
of Eqs. (6)–(9), and we adopt a first-order backward finite
difference scheme for the pseudo-time derivative. For example,
Eqs. (6) and (7), become new differential equations:
DU�;mi;j;k

Ds
þ

U�;mþ1
i;j;k � Un

i;j;k

dt
¼ Rmþ1
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where DU�;mi;j;k ¼ U�;mþ1
i;j;k � U�;mi;j;k;DB�;mi;j;k ¼ B�;mþ1

i;j;k � B�;mi;j;k; n is the physical
time level, m is the pseudo-time level (the number of sub-
iterations), Ds is the pseudo-time step size, and dt is the physical
time step size.

In our code, we examine dt ¼ 10Dt;50Dt;100Dt respectively.
The simulation scheme will become unstable if the pseudo-time
step size, Ds, is larger than the physical time step size, dt [28]. In
this paper, the pseudo-time step size is

Ds ¼min
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2dt
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CFLsub ¼ 0:3 is the CFL number for the pseudo-time step,
kA ¼ jv r j þ cfrðkB ¼ jvhj þ cfh; k

C ¼ jv/j þ cf /Þ is the maximum speed
in the rðh;/Þ direction, respectively.

Using a Taylor expansion for the right hand side of Eqs. (13) and
(14), we get

1
Ds
þ 1

dt

� �
I � @RU

@U

� �m	 

DU�;mi;j;k ¼ R

m
U �

U�;mi;j;k � Un
i;j;k

dt
ð15Þ

1
Ds
þ 1

dt

� �
I � @RB

@B

� �m	 

DB�;mi;j;k ¼ R

m
B �

B�;mi;j;k � Bn
i;j;k

dt
ð16Þ

Initially, we use U�;0i;j;k ¼ Un
i;j;k;B

�;0
i;j;k ¼ Bn

i;j;k for computation. Eqs.
(15) and (16) are solved using the unfactored line Gauss–Seidel
iteration [29,30]. As pointed out by [29], the standard line Gauss
relaxation is feasible among comparison of a modified point
Gauss relaxation, a standard Gauss–Seidel line relaxation, and the
Beam–Warming alternating direction implicit (ADI) scheme, and
even more efficient than that implemented with the ADI scheme
in three-dimensional flows.

This method can reach a very large pseudo-time step since no
factorization error is introduced. When the pseudo-time derivative
is equal to zero, the original formulation is recovered. Convergence
of the pseudo-time (sub-iterations) at each physical time step is
important for obtaining an accurate transient solution. However,
no well-established theory exists on the number of sub-iterations
or residual convergences needed to obtain a specified physical-
time accuracy while minimizing the computational cost per time
step. Also, it is too costly to make the sub-iteration procedure per-
form until convergence to machine precision [31]. In this paper,

besides setting up convergence criterion,
DU�;m

i;j;k

Ds 6 10�6, of the
pseudo-time (sub-iterations), we also set the maximal sub-
iterations to 15 in order to avoid infinite iterations. The physical
solution at new time level is updated: U�i;j;k ¼ U�;mþ1

i;j;k . The same

can be said for the magnetic part. We can also get U��i;j;k and B��

using this procedure, and then find the updated Unþ1 and Bnþ1.
4. Numerical results

CR 2048 in 2006 during a solar activity minimum is selected for
our validation study. With the numerical method described above,
our aim was to achieve 3D numerical results for the solar wind
plasma and magnetic field in the solar corona, which can provide
typical solar wind characteristics for a solar activity minimum.

Fig. 2 shows the steady-state MHD results of the radial speed,
vr , profiles along a heliocentric distance at h ¼ 90� and h ¼ 174�

for CR 2048 with dt ¼ Dt;10Dt;50Dt, and 100Dt, where Dt is the
physical time step determined by the usual stability with Eq.
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Fig. 2. The comparison of the radial speed, v r (km/s), profiles along a heliocentric distance at h ¼ 90� (left) and h ¼ 174� (right) for CR 2048 with dt ¼ Dt;10Dt;50Dt, and
100Dt at the same longitude / ¼ 0� from 1 to 20 Rs.

M. Zhang, X. Feng / Computers & Fluids 115 (2015) 115–123 119
(12). In this figure, h ¼ 90� corresponds to the vicinity of the equa-
tor or the heliospheric current sheet (HCS) region (close to the
equator near the solar minimum), while h ¼ 174� corresponds to
the open field region. From the model results with different dt,
we can find that in the open field region the speed is larger
representing the fast solar wind, while in the HCS region the speed
is smaller representing the slow solar wind.

We investigated the influence of different CFL conditions on the
radial speed profiles along a heliocentric distance for CFL numbers
0:5;5:0;25:0;50:0. From the numerical results of these tests, we
can find the dual time stepping scheme will cause a slight oscilla-
tion of the radial speed within the inner corona around the equator
(left panel of Fig. 2) without changing the general structure of the
problem. As for their corresponding plots in the open field region
as shown in the right panel of Fig. 2, we do not see any difference
of v r for these different CFL conditions. Overall, the scheme for dif-
ferent CFL works well. The slight oscillation with different CFL is
caused by the history of the inflow through the solar surface, which
might be slightly different in simulation with different CFL num-
ber. Also, the sub-iterations in dual time stepping scheme can
cause some oscillation. If we increase the sub-iterations by setting
the maximal sub-iterations up to 30 (as compared to 15 in produc-
ing Fig. 2), then the oscillation will decrease. To see this, Fig. 3
shows the radial speed and number density profiles along a
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Fig. 3. The comparison of the radial speed, v r (km/s), and number density, N (108 cm�3), p
the same longitude / ¼ 0� from 1 to 5 Rs.
heliocentric distance from 1 to 5 RS at h ¼ 90� for dt ¼ 100Dt, in
comparison with those of dt ¼ Dt. We can see the oscillation
become smaller compared to Fig. 2. Of course, increasing the
sub-iterations will add our computational cost.

From our experiments, it is found that the convergence criterion
for the pseudo-time iteration loop is significant in simulating solar
wind MHD flows. In the pseudo-time iteration, using a given con-
vergence criterion is suggested. If using a maximum iteration step,
we suggest that the maximum iterations are limited in different
areas along the radial direction to ensure the time accuracy and
at the same time improve the computational efficiency. Similarly,
near large gradient regions, increasing the pseudo-time maximum
iteration and refining grid can better enhance the resolution of the
numerical solution.

Next, we present our numerical results of the steady-state
ambient solar wind for dt ¼ 100Dt. Fig. 4 displays the radial mag-
netic field with a Gauss unit at 2.5 Rs for CR 2048 with
dt ¼ 100Dt and PFSS. Obviously, the neutral lines from MHD and
PFSS models share the same pattern.

Fig. 5 displays the number density, radial speed, and tempera-
ture maps for CR 2048 with dt ¼ 100Dt on the different surfaces
at 2.5 Rs and 20 Rs. The number density decreases with the helio-
centric distance while radial speed increases. The flow around
the vicinity of the HCS region has a high density, low speed, and
Heliocentric Distance (r/Rs)

N

2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

1.4

CFL
10CFL

rofiles along a heliocentric distance at h ¼ 90� for CR 2048 with dt ¼ Dt and 100Dt at



-0.23

-0.1-0.1
-0.05

-0.05

0.05
00

0.050.050.05 0.10.1

0.230.23

Heliolongitude (deg)

H
el

io
la

tit
ud

e 
(d

eg
)

100 200 300

-50

0

50
-0.2-0.2

-0.1-0.1
-0.05

-0.05

.05
00

0.050.050.05 0.10.1

0.20.2

Heliolongitude (deg)

H
el

io
la

tit
ud

e 
(d

eg
)

100 200 300

-50

0

50

Fig. 4. The radial magnetic field with a Gauss unit at 2.5 Rs for CR 2048 with dt ¼ 100Dt (left) and PFSS (right).
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low temperature, while at the polar or the open field regions the
inverse condition can be seen. These structures are consistent with
Fig. 7.

Fig. 6 presents the radial speed, v r , at 5 Rs from the MHD result
for CR 2048 with dt ¼ 100Dt and WSA model [21,22]. The WSA
model is an empirical model that can obtain the solar wind
speed in which the radial speed is defined as

v r ¼ 265þ 1:5
ð1þf sÞ

2=7 ð5:8� 1:6e½1�ðhb=7:5Þ3 �Þ
3:5

with the use of hb and

the expansion factor f s [23]. f s is the magnetic expansion factor

which reads f s ¼ ð1RÞ
2 BRs

BR
where BRs and BR are the magnetic field

strength at the solar surface and at the heliocentric distance
R = 2.5 Rs. hb is the minimum angular separation between an open
magnetic field foot point and its nearest coronal hole boundary.
From this figure, we can see that the radial speed from the MHD
result is smaller to that from the WSA. This is because the f s

obtained from the steady-state magnetic fields of the MHD model
is bigger than that of the WSA model and will have a large expan-
sion for the magnetic field and then present a relatively low speed.
This can be interpreted physically in terms of the pressure excised
by the plasma that further spreads out the magnetic field in the
MHD simulation [17].

Fig. 7 shows the model results for CR 2048 with dt ¼ 100Dt, the
magnetic field lines, radial speed v r , and number density N on two
different meridional planes at / ¼ 180� � 0� and / ¼ 270� � 90�

from 1 to 20 Rs, where the arrowheads on the black lines represent
the directions of the magnetic fields. At high latitudes, the mag-
netic field lines extend into interplanetary space and the solar
wind in this region has a faster speed and lower density. On the
contrary, the slow solar wind and high density are located at lower
latitudes around the HCS. We can also see a helmet streamer
stretched by the solar wind in this region. Above the streamer, a
thin current sheet is displayed between different magnetic
polarities.
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Fig. 5. The model results for CR 2048 with dt ¼ 100Dt on the different surfaces at 2.5 Rs (t
units of 106 cm�3;104 cm�3 from top to bottom, the middle column denotes radial spee
105 K.
From the MHD results in Figs. 4–7 for 2.5, 5, 20 Rs, it can be seen
that the density-maximum (radial speed-minimum) locations can
serve as an indicator of current-sheet position, while the locations
of the density-gradient maximum can be a reliable indicator of the
coronal-hole boundaries. As the heliocentric distance increases
from the inner corona to the outer corona, the topology of the
streamer belts indeed shows a slight radial variation, gradually
flattening toward the equator as the heliocentric distance increases
from 2.5 to 20 Rs. This radial variation of the helmet streamer belt
is governed by the inertia of the radially accelerating plasma flow.

Fig. 8 shows the model results for CR 2048 with dt ¼ 100Dt, the
total speed v, and a Alfvénic surface in the meridional planes of
/ ¼ 180� � 0� and / ¼ 270� � 90� from 1 to 20 Rs. The Alfvénic sur-
face is indicated by the white line. The Alfvénic Mach number

defined as MA ¼ v ffiffiffiffiffilq
p

B ;MA increases from being subsonic in the
inner corona (	 0:1 or even smaller on the solar surface) to
superAlfvénic in interplanetary space (	 10 at 1 AU). Thus we have
to pass the critical points MA ¼ 1 [32], where the Alfvénic critical
points generate the Alfvénic surface. From Fig. 8, we can see that
the Alfvénic surface is wispy, which implies that the solar wind
is not spherical and higher velocities are achieved at high latitudes.
In the inner corona below the Alfvénic critical points, the magnetic
stress dominates the interaction. The coronal magnetic field is lar-
gely dipole-like around the minimum phase of solar activity. The
gradient of the radial field strength in latitude, with stronger fields
at higher magnetic latitudes, bends the stream lines from the radial
direction toward the magnetic equator. However, in the corona
beyond the Alfvénic critical points, it is the inertia of the radially
accelerated plasma flow that dominates the magnetic field-plasma
interaction. The Alfvénic critical points are not spherical-sym-
metrically distributed: the lowest (highest) Alfvénic critical point
occurs in the equator (pole) [33,34]. The Alfvénic surface derived
from the MHD results on the meridional planes roughly ranges
from about 6 to 11 Rs during this CR. Possible distances for the
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Alfvénic surface have been suggested by several recent works.
Wang et al. [35], and Sheeley et al. [36] have observed isolated
inbound retracting loops in streamers, and without observing such
a feature beyond 6 Rs, they attribute this lack to a low Alfvénic sur-
face near 6 Rs. Schwadron et al. [37] and Smith et al. [38] treat the
Alfvénic surface in the context of the heliospheric flux balance, and
place it at 10–15 Rs. Based on the radial evolution of the direction
of the coronal magnetic field, Zhao et al. [34] showed that the coro-
nal helmet streamer belts observed at several heights by SOHO/
LASCO, together with the source surface field of the HCCSSS model
[39–41], can be used to find the heliocentric distance of the lowest
and highest Alfvénic critical point. The highest Alfvénic critical
point around the solar minimum is located between 10 and 14
Rs. The highest radial Alfvénic critical point around the solar mini-
mum may be located between 10 and 14 Rs, where both the effect
of solar rotation can be neglected and stream-stream interactions
are unimportant. Our numerical MHD results determine the loca-
tion of the Alfvénic surface from 6 to 11 Rs due to the interaction
of the solar wind flow and magnetic field.
In the MHD simulations, the divergence-constraint of the mag-
netic field is important, because the large numerical error from
r � B can cause non-physical flow parallel to the magnetic field.
For solar wind numerical studies, there are many discussions in
the literature [e.g. 17,26,42–44]. To quantitatively see how r � B
evolves, following [44], we define the relative divergence error
compared to the magnetic field of the cell as follows:

ErrorðB1; B0Þ ¼
PM

k¼1

R
Vk
r�B1dVR

Sk
jB0 jdS

=M; ErrorðB; B0Þ ¼
PM

k¼1

R
Vk
r�BdVR

Sk
jB0 jdS

=M;

ErrorðBÞ ¼
PM

k¼1

R
Vk
r�BdVR

Sk
jBjdS

=M where M is the total number of cells in

the computational domain, Vk is the kth sliding volume cell
involved with the mesh grids, and Sk is the surface areas involved
with Vk. ErrorðB1; B0Þ and ErrorðB; B0Þ can be seen as the magni-
tudes ofr � B1 andr � B compared relatively to the magnetic field
B0. Fig. 9 gives the evolution of the average relative divergence
error as a function of time for ErrorðB1; B0Þ; ErrorðB; B0Þ, and
ErrorðBÞ. From this figure we can see that ErrorðB1; B0Þ is around



time (hrs)

Er
ro

r (
B1

,B
0)

0 5 10 15 20 25
-8

-7.5

-7

-6.5

-6

-5.5

time (hrs)

Er
ro

r (
B,

B0
)

0 5 10 15 20 25
-6.5

-6

-5.5

-5

-4.5

-4

time (hrs)
Er

ro
r (

B)
0 5 10 15 20 25

-6.5

-6

-5.5

-5

-4.5

-4

Fig. 9. The model results of temporal evolution of the log10 error for CR 2048 with dt ¼ 100Dt.

1

1

1

1

450
400
350
300
250
200
150
100
50

|v| (km/s)

1

1

1

1

500
450
400
350
300
250
200
150
100
50

|v| (km/s)

Fig. 8. The model results for CR 2048 with dt ¼ 100Dt, the total speed v (km/s), and Alfvénic surface (white line) on the meridional plane of / ¼ 180� � 0� (left) and
/ ¼ 270� � 90� (right) from 1 to 20 Rs.

122 M. Zhang, X. Feng / Computers & Fluids 115 (2015) 115–123
10�6 and stays the same after 7 h without any obvious large error
after a long run time. However, ErrorðB; B0Þ, and ErrorðBÞ remain
around 10�4:6 in the calculation, which means that r � B0 con-
tributes much largely tor � B, and thatr � B1 is kept at very small
level by applying CT method. This verifies that the dual-time step-
ping produces competitive results in successfully keeping the
divergence error small. Numerical validation for solar wind sim-
ulation in this paper also suggests that non-zero errors in the field
divergence do not introduce changes in the large-scale dynamics of
the magnetic field. As usual, large (unresolved) gradients in the
local magnetic field cause large divergence errors, and with higher
resolution, the gradients are resolved better and the divergence
errors become smaller.

5. Conclusions

For an ambient solar wind study, we proposed a dual time step-
ping method with a splitting scheme with a combing FV scheme
for the fluid part in MHD equations and the constrained transport
method for the magnetic induction part. This newly established
scheme can avoid the complex eigenstructure of the Jacobian
matrices. Implicit time integration with pseudotime stepping is
used to relax the physical time step.

By adding a pseudo-time derivative to the MHD equations for
the solar wind plasma, the physical time layer tracks the physical
variety of the flow and the pseudo-time layer iterates to a
steady-state in each physical time step. Then the physical time step
is not limited by the numerical stability, while it is still based on
the numerical accuracy criterion. Thus, the physical time step
can be very large.
The numerical results for CR 2048 with different CFL conditions
show the capability of producing structured solar wind. As an
independently developed 3D MHD code, the present scheme and
dual time technique has demonstrated accuracy and robustness
through numerical experiments of ambient solar wind for CR
2048. Our numerical results have demonstrated overall good
agreement with the observations.

The use of dual time stepping is beneficial in the computation
since the physical time step is not limited by the corresponding
values in the smallest cell and it is selected based on the numerical
accuracy criterion.

The present dual time scheme may be able to extend the lim-
itation of the plasma beta in the strong magnetic field region, such
as solar coronal magnetic field MHD reconstruction, because of the
new enlarged CFL condition.

The pseudo time iteration steps required for convergence
depend on the CFL number and the grid numbers. For each physical
time step, dt, it takes about 10 pseudo time iterations to meet the
10�6 tolerance, compared to the CFL number 0.5 without the dual-
time technique it takes 100 iterations under the enlarged CFL num-
ber 50.0. Here, we only see how much the CFL number can be
enlarged, without caring much about the computational time.
Nonlinear iteration methods should be further investigated. Some
advanced nonlinear MHD solvers [9,45–49] are at hand. Research
in the area of nonlinear multigrid is essentially unexplored for
extended MHD describing the solar wind plasma. Another interest-
ing challenge in developing implicit methods for MHD is the
combination of Jacobian-Free Newton–Krylov or nonlinear multi-
grid (also known as full approximation scheme) methods with
adaptive mesh refinement (AMR).
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With pseudo-time, additional acceleration techniques such as
multigrid [2] and preconditioned Harten–Lax–van Leer (HLL)
schemes [50,51] should be used without changing the properties
of the physical time in order to explore fast computational speeds
and reduce the stiffness for the low Mach number solar coronal
region.

Furthermore, the time derivation preconditioning technique
[52,53], is promising for solving the stiffness met in a solar wind
simulation in the solar corona, where we have low speeds, i.e.,
low characteristic Mach numbers for sound, fast magnetosonic
speed and Alfvénic speeds. However, proceeding in an MHD sim-
ulation including all speed situations like that used in fluid
mechanics [50,51] is still challenging since more characteristic
wave modes exist for MHD equations. These considerations will
be left for our future work.
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