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Abstract. A new numerical scheme of combining an E-CUSP (energy-convective
upwind and split pressure) method for the fluid part and the constrained transport (CT)
for the magnetic induction part is proposed by following Shen et al. (2012). Ziegler
CT (Ziegler 2004) is used for the magnetic induction part. Meanwhile, in order to
avoid the occurrence of negative pressure in both reconstructed and updated profiles, a
mixed method of positivity preserving method is used. Furthermore, the MHD equa-
tions are solved at each physical time step by advancing in pseudo time. As an inde-
pendently developed three-dimensional MHD code, the present scheme combined with
positivity preserving method and dual time technique has demonstrated the accurate-
ness and robustness through numerical experiments of benchmark problems such as the
2D Orszag-Tang vortex problem and the 3D blast wave problem.

1. Introduction

The characteristic of CUSP (convective upwind and split pressure) schemes is that it
simultaneously consider the convective upwind characteristics and avoid the complex
matrix dissipation such as that of the Roe’s flux difference splitting scheme. The CUSP
family can be basically categorized into two types: the H-CUSP and E-CUSP (Jameson
1995). The H-CUSP scheme has total enthalpy in the energy equation in the convective
vector, so the scheme is not fully consistent with the disturbance propagation that may
affects the stability and robust of the H-CUSP scheme. While, the E-CUSP schemes
use total energy in the convective terms, which result in splitting the eigenvalues of the
Jacobian to convection (velocity) and waves (speed of sound).

The wave-like structure of the MHD is analogous to that of the hyperbolic sys-
tems and thus the E-CUSP scheme have been extended by Shen et al. (2012) to the full
set of MHD equations, and the constraint transport (CT) method ( Balsara and Spicer
1999) acts as the role of keeping the divergence constraint ∇ · B = 0 and a correction
step for cell center magnetic field. The E-CUSP for MHD introduced by Shen et al.
(2012) has low diffusion and are able to capture the crisp shock waves and exact con-
tact discontinuities. In reality, the MHD equations can be split into a fluid part leading
to an extended Euler system with magnetic force as source and a magnetic induction
part (Fuchs et al. 2009; Ziegler 2004). In this paper, we use E-CUSP method to solve
the fluid part of MHD, and apply the CT method (Ziegler 2004, 2005) to the magnetic
induction part to update the cell face magnetic field. In order to maintain the positivity
of pressure and density in the reconstructed profile within the zone for problems in-
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volving multiple, interacting shock waves in complex flow, a self-adjusting positivity
preserving method by Balsara (2012) is used. The method examines the local magnetic
speed to detect regions with strong shock. By visiting the neighboring zones that have
connectivity with a zone of interest, we are able to identify minimum and maximum
values for density and pressure that should bound the reconstructed profile within the
zone of interest (Balsara 2012). Then, weighted mean of the reconstructed conserved
variable and the conserved variable is used to correct the reconstructed variable. The
self-adjusting positivity preserving method is easy and inexpensive to implement and
the result shows that this method can efficiently enhance the robustness.

In the three-dimensional simulation, time steps should be dictated by numerical
stability, so they are much smaller than required by accuracy considerations, which
will increase computer time for conditionally stable time-marching schemes. To im-
prove computational efficiency, schemes which can use larger possible time-step sizes
permitted by accuracy considerations should be taken into account. Here, we use the
dual time step scheme to update the conserved variables for flow and magnetic field.
Dual time step, which do not modify the original transient evolution of the governing
equation, adds to the governing equation a pseudo-time derivative. It uses the pseudo-
time steady-state solution to approach the physical-time solution. The advantage of
dual time step is that it may possibly speed up the computational efficiency and extend
the range of plasma β value.

The paper is organized as follows. In Section 2, the hybrid scheme of combining
E-CUSP for the fluid part of MHD and the constraint transport method for the magnetic
induction part with dual time stepping are described. In Section 3, two benchmark
problems of Orszag-Tang vortex and blast wave are shown. Finally, conclusions are
made.

2. Numerical method for MHD equations

The ideal MHD equation for inviscid flow can be expressed as:

∂ρ

∂t
+∇·(ρu) = 0,

∂ρu
∂t
+∇·(ρuu+ptI−BB) = 0,

∂ρe

∂t
+∇·((ρe + pt)u − B(B · u)) = 0 (1)

∂B
∂t
+ ∇ · (uB − Bu) = 0 (2)

where ρ is the flow density, u = (u, v,w) is the flow velocity, B is the magnetic field, p

is the pressure, ρe is the total energy, and pt =
1
2 B2 + p.

In this paper, following the idea of Fuchs et al. (2009) we split the MHD equations
into a fluid part Eqs. (1) and a magnetic induction part Eq. (2), and employ the E-
CUSP for the fluid part and CT scheme for the magnetic induction part in order to
get a scheme for full MHD equations (Fuchs et al. 2009). The fluid part Eqs. (1) is
approximated by E-CUSP (Shen et al. 2012), and the magnetic part (2) is solved using
the divergence-free constraint preserving schme of the constrained transport method
(Ziegler 2004, 2005). These two sets of schemes can be combined either component
by component, or by using an operator splitting procedure to produce a full scheme for
the MHD equations. This is, piecing them together, the resulting update full scheme
for MHD equations reads

B̄n+1
f = WCT

(

Un
···, B̄

n
···, δt

n
)

, Un+1
i, j,k = VE−CUSP

(

Un
..., B̄

n
···, δt

n
)
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where (i, j, k) stands for the cell center B̄ f represents magnetic field at the face centers
Bxi± 1

2 , j,k
, Byi, j± 1

2 ,k
, and Bzi, j,k± 1

2
.

For convenience, we can write the semi-discretized form for the fluid part for Eqs.
(1) as follows

∂U
∂t
+

Fi+ 1
2 , j,k
− Fi− 1

2 , j,k

δx
+

Gi, j+ 1
2 ,k
−Gi, j− 1

2 ,k

δy
+

Hi, j,k+ 1
2
−Hi, j,k− 1

2

δz
= 0 (3)

with each term having its usual meaning. Following the E-CUSP scheme of Shen et al.
(2012) we decompose the flux F to convective and generalized wave fluxes:

F = fu + P + ψu (4)

where

f =
[

ρ, ρu, ρv, ρw, ρe
]T , ψ =

[

0, 0, 0, 0, pt

]T

P =
[

0, pt − BxBx,−ByBx,−BzBx,−Bx(uBx + vBy + wBz)
]T
,

with the numerical flux at the interface being evaluated in the same way as that given
by Shen et al. (2012). Here, in order to achieve second order spatial accuracy, the
monotone upstream-centered (MUSCL) reconstruction scheme is used to reconstruct
the flow variable. Following Ziegler (2004, 2005), the reconstruction of magnetic field
can be achieved by using values at the centers of the cell surfaces.

Shen et al.’s E-CUSP (Shen et al. 2012) uses the WENO reconstruction to compute
all the eight equations on zone cell centers by the E-CUSP scheme, then in order to
preserve the divergence free condition, they employ Balsara and Spicer CT ( Balsara
and Spicer 1999) to compute the cell face magnetic field, and finally use the cell face
magnetic field to modified the energy.

In our scheme, we split the MHD equations into fluid part and magnetic part, then
use different schemes to deal with each part. In fact, the E-CUSP scheme with the
MUSCL reconstruction is only used to solve the fluid part on the cell centers, while
the magnetic field is obtained with Ziegler CT with van Leer’s TVD slope limiter on
the cell faces. In Ziegler’s scheme, all the reconstruction is based on the staggered
magnetic field components without cell-centered magnetic field involved. Thus, there
is only one set of magnetic field updated at the face center. The magnetic fields stored
on the faces B f are only averaged to the zone center value B when we solve the entropy
equation for positivity consideration below.

Positivity of density and pressure may be lost in updating the unknowns at next
time step somewhere within a zone or during the reconstruction procedure in obtain-
ing the reconstructed values at the cell interface. In order to avoid the negativeness
of density and pressure in the reconstruction and updating procedure, we take the fol-
lowing methods. First, to preserve the positivity for constructed variables, we follow
the self-adjusting positivity-preserving method proposed by Balsara (2012). Second, to
insure the positivity of the updated variables for each new time level, if the pressure is
negative, we turn to solve the entropy equation ∂

∂t
( p

ργ−1 ) + ∇ · (u p

ργ−1 ) = 0. In our tests,
the combination of Balsara’s and switches from energy equation to entropy equation is
sufficient for the positivity.
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2.1. Time integration with dual time stepping

To improve the computational efficiency, we use a backward differentiation in time
integration with dual time stepping to advance time marching. The scheme added to
the governing equations a pseudo-time derivative emulates the original physical-time
derivative. Our dual time stepping formulation for Eqs. (3) reads

Un+1,m+1
i, j,k

− Un+1,m
i, j,k

δτ
+

3Un+1,m+1
i, j,k

− 4Un
i, j,k
+ Un−1

i, j,k

2δt
=

−
Fn+1,m+1

i+ 1
2 , j,k

− Fn+1,m+1
i− 1

2 , j,k

δx
−

Gn+1,m+1
i, j+ 1

2 ,k
−Gn+1,m+1

i, j− 1
2 ,k

δy
−

Hn+1,m+1
i, j,k+ 1

2

−Hn+1,m+1
i, j,k− 1

2

δz

where, n is the physical time level, m is the pseudotime level (the number of subiter-
ations), δτ is the pseudotime step size, and δt is the physical time step size. After the
residual terms in the right hand of the above equation are linearized at the m+1 pseudo-
time level with respect to the previous pseudotime level m, we arrive at an unfactored
implicit form as below

(
1
δτ
+

3
2δt
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)

and the matrices B and C given likeA. Sim-

ilarly, the above dual time procedure applies to the CT scheme for the magnetic in-
duction part. In each pseudo-time step, the above equation is solved by employing
Gauss-Seidel line iteration.

These equations are marched in pseudo time until the derivation of Ui, j,k with re-
spect to τ converges to zero. In simulation, the equations are iterated in pseudo time
so that Un+1,m+1 approaches the physical Un+1 as

∣
∣
∣
∣U

n+1,m+1
i, j,k

− Un+1,m
i, j,k

∣
∣
∣
∣ /δτ converges to

zero. In the dual time stepping procedure, a physical-time accurate solution is generated
upon convergence towards pseudo-time steady-state per physical-time step. In practice,
it is not necessary for the the derivation of Ui, j,k with respect to τ to approach zero. As
pointed out by Zhao et al. (2008), the convergence criterion can be prescribed by re-
quiring that the residual error max( δρδτ ) decreases three magnitude. Here, we obtain the

conserved variables at n + 1 time level by choosing
∣
∣
∣
∣U

n+1,m+1
i, j,k

− Un+1,m
i, j,k

∣
∣
∣
∣ /δτ < 1 × 10−3

as the convergence criterion. At the same time, in order to avoid the computation into
infinite loop, the maximum iteration steps may be limited. The value of pseudo-time
δτ = min( 2

3δt,CFLus × Vi, j,k/(λx + λy + λz)) (Jameson 1991) (CFLus is the usual stabil-
ity CFL number, and Vi, j,k represents the cell volume with λx, λy, and λz the maximum
eigenvalues of x, y, z directions respectively.) is suggested such that the matrix involved
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in the solver is diagonally dominant and the Gauss-Seidel line iteration can converge.
Here, we choose δτ = dt, where dt is the physical time restricted only by the stability
condition before being enlarged according to Jameson (1991).

Since backward differentiation in time integration involves three time steps, namely
n − 1, n and n + 1, a startup procedure is required. Hence, for the first iteration, the ex-
plicit second-order Runge–Kutta time stepping that involves two time steps, n and n+1,
is used to integrate Eq. (2) and Eqs. (3) with the same reconstruction procedure given
above.

3. Numerical examples

3.1. 2D: Orszag–Tang vortex

Because the Orszag–Tang vortex problem has interactions of multiple shock waves gen-
erated as the vortex evolves, it is considered as one of the standard tests to validate a
MHD numerical method. The Orszag–Tang vortex problem is defined on a square do-
main [0, 2π] × [0, 2π] with initial conditions: ρ = γ2, p = γ, u = − sin y, v = sin x, Bx =

− sin y, By = sin 2x, where γ = 5/3. Periodic boundary conditions are adopted in both
coordinate directions. Numerical results are calculated on a N2 grid with N = 200, 400
zones. Figure 1 displays the pressure and Bx contours with a uniform mesh of 200×200
and 400 × 400 grid points for different CFL conditions.

From Fig. 1, it is evident that at t = 3, a fast shock front is formed in the region
of 1.25π < x < 1.5π and 0 < y < 0.75π, a slow shock front is formed in the region of
0.5π < x < π and 0.5π < y < 0.75π. Our results are quite in agreement with those of
Shen et al. (2012), Feng et al. (2006), and Zhou and Feng (2012), although different
grids are used.

We investigate the influence of different CFL conditions on the pressure distri-
butions along y = 1.0 with the different mesh grids: 200 × 200 for CFL numbers
0.3, 3.0, 6.0, 9.0 and 400 × 400 for CFL numbers 0.3, 6.0, 9.0, 18.0, 24.0, 30.0. From
the numerical results of these tests, we can find the dual time stepping scheme will af-
fect the local maximum and minimum values of the pressure slightly without changing
the general structure of the problem. As for their corresponding plots like Fig. 1, we
can not discover any difference of the pressure and Bx with these different CFLs. But
overall, the scheme works well.

From our experiments, it is found that the convergence criterion for the inner it-
eration loop is significant in simulating unsteady MHD flows. In the inner iteration,
using a given convergence criterion is suggested; if using a maximum iteration step, to
ensure the time accuracy and at the same time improve the computational efficiency, we
suggest that the maximum iterations are limited in different areas. Near large gradient
regions, increasing the inner maximum iteration and refining grid can better enhance
the resolution of such variations.

3.2. 3D: blast wave problem

A blast wave problem is a good test of the robustness of a code in modeling 3D shocks
and rarefaction. The problem is defined on the 3D Cartesian domain [−0.5, 0.5]3 with
initial conditions (Balsara 2012): Bx = By = Bz = 50/

√
3,u = 0, where γ = 1.4 with

unit density. The pressure is set to a value of 1000 inside a central region with a radius
of 0.1 and outside the region the pressure is 1.0. In this case, the plasma β is 8 × 10−4
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Figure 1. Pressure contour and Bx contours of Orszag–Tang MHD problem with
different CFL values with grid meshes 200 × 200 (left two columns) and 400 × 400
(right two columns) at t = 3.0. In the left two columns, the CFL number of the first
row is 0.3, the second row 3.0, the third row 6.0, the fourth row 9.0. In the right two
columns, the CFL number of the first row is 0.3, the second row 6.0, the third row
9.0, the fourth row 18.0.

initially. In order to see the capability of modeling low plasma β, we have another
run for Bx = By = Bz = 100/

√
3 while keeping the other parameters unchanged, and

the plasma β is 2 × 10−5 initially. The blast wave problem becomes stringiest when the
plasma β becomes smaller, which can indeed be reached in the solar corona as well as in
the magnetosphere of stars and planets. The problem is run up to 0.012. Figure 2 shows
the log10 color plot of the density and pressure for the mid-plane in the z-direction with
100× 100× 100 grids for β = 8× 10−4 case (top panel) and β = 2× 10−5 case ( bottom
panel).

In this problem, an almost spherical fast magnetosonic shock propagates through
this low-β ambient plasma. From Fig. 2, we can see that there are regions where the
strong shock propagates obliquely to the mesh. Our results are quite similar to those of
Balsara (2012).
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Figure 2. Pressure and Bx contours of blast wave problem from the dual time
scheme with grid mesh 100×100×100 for β = 8×10−4 (top panel) and β = 2×10−5

(bottom panel) at t = 0.012. The CFL number is 4.5.

4. Conclusions

Here is proposed a dual time stepping method with splitting scheme of combing E-
CUSP scheme for the fluid part in MHD equations and the constrained transport method
for the magnetic induction part. This newly established scheme can avoid the complex
eigenstructure of the Jacobian matrices. Backward differentiation in time integration
with pseudotime stepping is used to relax the physical time step. Two standard test
problems, including the 2D Orszag–Tang vortex problem and the 3D blast wave prob-
lem, are solved to validate the accuracy and the robustness of the scheme. The results
demonstrate that the scheme can resolve the complex wave characteristics in MHD.

The use of dual time stepping is beneficial in the computation since the use of
dual time stepping allows the physical time step not to be limited by the corresponding
values in the smallest cell and to be selected based on the numerical accuracy criterion.
It is hoped that the present dual time scheme can extend the limitation of the plasma
beta in the strong magnetic field region, such as solar coronal magnetic field MHD re-
construction, because of the admittance of enlarged CFL condition. The pseudo time
iteration steps required for converngence depend on the CFL number and grid numbers.
For example, as for the blast wave problem, when the grid number is 100 × 100 × 100
under enlarged CFL number 30.0, 65 pseudo time iterations are need to meet the 0.001
tolerance, compared to the CFL number 0.3 that will takes 100 iterations. Here, we
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only see how much CFL number can be enlarged, without caring much about the com-
putational time. In a pseudo-time, additional acceleration techniques, such as multigrid
(Kifonidis and Müller 2012), time-derivation preconditioning (Turkel 1999), should be
used without changing the properties of the physical-time in order to explore fast com-
puational speed. These considerations, combined with the present method’s application
to the numerical simulation of solar corona (Feng et al. 2011, 2012) will be left for our
future work.
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