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ABSTRACT
Structures and propagating waves are often observed in solar wind turbulence. Their origins and
features remain to be uncovered. In this work, we use 3D driven, compressible MHD turbulence
simulations to investigate the global signatures of the driven fluctuations in whole spatial and
temporal domain. With four-dimensional spatial-temporal (x, y, z, t) Fourier transformations
implemented, we have identified two distinct main populations: waves, which satisfy the ω − k
dispersion relations and are propagating; and structures, which satisfy the polarization relations
but non-propagating (ω = 0). Whereas the overall turbulent energy spectrum is still consistent
with k−5/3, the contributions from waves and structures show very different behaviour in k
space, with structures dominating at small k but waves becomes comparable to structures
at large k. Overall, the fluctuations in the directions perpendicular to the large-scale mean
field B0 are a manifestation of structures, while along the parallel direction, the fluctuations
are dominated by waves. Also, a significant portion of the incompressible structures are the
Alfvénic nature, and with imbalanced increased, the waves predominantly propagate in one
direction and nearly perpendicular to B0. Differentiating the relative contributions from waves
and structures could have important implications for understanding the non-linear cascade
processes in the inertial range as well as particle-fluctuation interactions at small scales.
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1 IN T RO D U C T I O N

The solar wind, a supersonic and super-Alfvénic plasma flow,
continuously expands from the Sun into the heliosphere, and is
permeated by various kinds of fluctuations. Since the beginning of
the space era, studying the properties of these fluctuations has been
among the major research topics in solar wind physics as they play
a relevant role in solar wind generation, high-energy particles accel-
eration, plasma heating, cosmic rays propagation, and other aspects
of plasma behaviour in space (Goldstein, Roberts & Matthaeus
1995; Tu & Marsch 1995; Biskamp 2003; Bruno & Carbone 2013;
Howes & Nielson 2013). In recent years, considerable progress has
been made; however, the nature of the fluctuations has not yet been
fully understood.

Both a well-defined turbulence spectrum and a strong correlation
between velocity and magnetic fluctuations are observed in the
solar wind (Coleman 1968; Belcher & Davis 1971; Burlaga &
Turner 1976; Dobrowolny, Mangeney & Veltri 1980; Marsch et al.
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1981; Bavassano et al. 1982; Matthaeus & Goldstein 1982; Bruno,
Bavassano & Villante 1985; Roberts et al. 1987a,b; Bavassano &
Bruno 1989; Grappin, Velli & Mangeney 1991; Carbone 1994;
Bieber, Wanner & Matthaeus 1996; Goldstein & Roberts 1999;
Bavassano, Pietropaolo & Bruno 2000; Podesta, Roberts & Gold-
stein 2007; Alexandrova et al. 2008; Horbury, Forman & Oughton
2008; Podesta 2009; Boldyrev et al. 2011; Li et al. 2011; Yao
et al. 2013; Zhao et al. 2014; He et al. 2015; Shi et al. 2015;
Wang et al. 2016; Shi et al. 2017). Two perspectives have come to
dominate the view of solar wind magnetic and velocity fluctuations.
Coleman (1968) found solar wind magnetic fluctuations often
exhibit power laws in wavenumber k, with spectral indices close
to that predicted by Kraichnan (1965), and gave first evidences
that the solar wind is a highly turbulent, non-linear medium. In
another pioneering paper by Belcher & Davis (1971), velocity and
magnetic field fluctuations were shown to behave as pure Alfvén
waves propagating outward, and since then, it has been assumed
that the solar wind may be regarded as a superposition of linear
waves, primarily in Alfvén modes. The turbulence description and
the wave description can have different consequences, since the
presence of Alfvén waves renders non-linear transfer to small scales
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less efficient, leading to a different turbulent behaviour from that
described by Kolmogorov (1941) (Kraichnan 1974). Meanwhile
ubiquitous Alfvénic correlations in the solar wind have stimulated
a lengthy debate based on whether the highly Alfvénic fluctuations
are passive remnants of coronal processes or represent dynamically
evolving turbulent magnetofluid (Matthaeus & Zhou 1989).

Meanwhile, the solar wind fluctuations mix with non-propagating
coherent structures, which are often observed and are an important
ingredient of the dynamics and dissipation of the solar wind
fluctuations (Tu, Marsch & Thieme 1989; Bruno & Bavassano 1991;
Tu & Marsch 1993; Bruno et al. 2001; Sorriso-Valvo, Carbone &
Bruno 2005; Greco et al. 2009; Wang et al. 2013; Chen et al. 2014;
Yang et al. 2015; Perrone et al. 2016, 2017; Roberts et al. 2017; Yang
et al. 2017b,c, 2018a; Wang et al. 2018; Roberts, Narita & Escoubet
2018). In addition, non-linearly interacting fluctuations are expected
to generate coherent structures (Matthaeus et al. 2015), which
are interpreted as current sheets, discontinuities, shocks, magnetic
solitons, magnetic holes, Alfvén vortex, and so on. Including
convective structures in a turbulence model seems necessary to
explain why the magnetic energy fluctuation is greater than the
kinetic energy fluctuation, and the reduction of the Alfvénicity of the
fluctuations with radial distance (Tu & Marsch 1993). By a statistical
analysis, Bruno et al. (2007) showed that magnetically dominated
structures represent an important component of the interplanetary
fluctuations within the MHD range of scales.

However, no general consensus presently exists within the
community regarding the nature of plasma fluctuations along
the turbulent cascade. Should plasma fluctuations be viewed as
a superposition of interacting waves, such as Alfvén waves at
MHD scales (Gosling et al. 2009), or as a collection of coherent
structures, responsible for intermittency (Groselj et al. 2018), or as
a coexistence of both waves and structures (Dmitruk & Matthaeus
2009; Parashar et al. 2010; Lugones et al. 2016; Perrone et al. 2016;
Andrés et al. 2017)

Wave number and frequency fluctuations together can provide
important insights in answering these questions as the propagation
of waves satisfies dispersion relationships, while structures will
not propagate. Observationally, it is quite difficult to obtain fully
four-dimensional (4D; 3D spatial plus temporal) information about
the solar wind fluctuations, which makes it impossible to specify
unambiguously the distribution of fluctuation energy over the full
space of wave vector and frequency. In this work, we will use
numerical simulations to investigate turbulent power over the full
space of wave vector and frequency, especially for both waves and
structures in compressive MHD turbulence with a large-scale mean
magnetic field.

In Yang et al. (2018b), the polarization of MHD modes was used
to decompose turbulent velocity and magnetic fields into Alfvén
modes, slow modes, and fast modes, and then the time variations of
the values at a strip along z-direction is examined to diagnose waves
and structures. This method not only tells us the existence of waves
and structures in local spots of turbulent fields, but also inspires us to
see the global signatures of the driven fluctuations in whole domain
(whole wavenumbers and whole frequencies. Here, with 4D spatial-
temporal (x, y, z, t) Fourier transformations employed, we explore
the nature of the driven fluctuations by their power distributions in
the planes perpendicular and parallel to the large-scale mean field
and their spectral behaviours in different wavenumber directions.
Beyond these, we compute energy occupation of waves and struc-
tures, and uncover their properties, which are not illustrated before
as far as we know. The paper is organized as follows: In Section 2,
we describe our numerical simulation parameters. In Section 3, we

present our findings, and in Section 4, we summarize our key results
and discuss their implications.

2 N U M E R I C A L M H D MO D E L

The description of the 3D compressible MHD model we used in
this paper follows the details given in Yang et al. (2017a, 2018b),
where we numerically solved the 3D compressible MHD equations
with a finite magnetic resistivity of η = 0.0001 and fluid viscosity
of ν = 0.0001. For the equation of state we choose an adiabatic
index γ = 5/3. The uniform large-scale field B0 is imposed in the
z-direction. We consider periodic boundary conditions in a cube
with a side length of 2πL0 and a resolution defined by the number
of grid points which is 5123.

Turbulence is driven at large scales with properties described
in Yang et al. (2017a, 2018b). In particular, we have studied three
cases that correspond to vary the cross-helicity σ c while keeping the
rest of turbulence parameters little changed. The base case has the
following properties: the initial quantities are given as ρ0 = 1.00,
|B0| = 1.00, and β0 = 1.00. For turbulence driving, the root-
mean-square (RMS) amplitudes of the magnetic field (Brms) and
velocity (urms) are maintained to be approximately 0.39 and 0.41,
respectively. At the statistically quasi-stationary state (typically
after tens of Alfvén times, where one Alfvén time is defined as
L0/VA), the Mach number (urms/〈Cs〉) ≈ 0.34, and Alfvén Mach
number (urms/〈VA〉) ≈ 0.41, where 〈Cs〉 = 1.21 and 〈VA〉 = 1 are
sonic speed and Alfvén speed, respectively. The plasma 〈β〉 ≈ 1.50,
and the normalized cross-helicity 〈σ c〉 ≈ 0.62. Relative to this base
case, we have studied two other cases with cross-helicity 〈σ c〉= 0.36
and 0.01, respectively.

One of our key goals is to investigate how much of the turbulent
fields (velocity and magnetic fields) actually come from propagating
waves versus non-propagating structures. Here, we adopt a similar
definition laid out in Andrés et al. (2017): using the spatial-temporal
analysis of all fluctuations, those concentrated at or close to the
linear dispersion relations with ω �= 0 will be called ‘waves’, while
those satisfying the polarization relations of Alfvén and slow modes
but with ω = 0 will be called ‘structures’. Furthermore, there are
fluctuations that do not satisfy either condition, which we refer as
‘residual turbulence’.

Our detailed analysis procedure is as follows: when the turbulent
quantities reach a statistically quasi-stationary state, taking quantity
Vx(x, y, z, t) as an example, we first perform Fast Fourier transform
(FFT) at each time frame to obtain V (k)

x (kx, ky, kz, t). We then carry
out mode decomposition analysis according to three basic modes
in compressible MHD, i.e. fast mode (FM), slow mode (SM), and
Alfvén mode (AM) using the exact relations described in Yang et al.
(2018b). For example, for Alfvén mode, we get V

(k)
xAM(kx, ky, kz, t).

Next, we perform an inverse FFT to get the perturbed quantities
of each decomposed mode at each time moment in real space, e.g.
VxAM(x, y, z, t). Finally, 4D FFT is done to obtain the energy of each
decomposed mode, e.g. V

(k)
xAM(kx, ky, kz, ω), over the full space of

wave vector and frequency. To prevent spectral leakage induced by
the non-periodicity of the time-series, a time apodization function
(Hann windows) is applied prior to the 4D FFT is taken.

The time domain transform is conducted over a time duration of
about 7 Alfvén time with a cadence of 0.01 Alfvén time, where one
Alfvén time is defined as L0/VA. To realize it, after the turbulence
reaches the statistically quasi-stationary state, we have stored 700
cycles on a disk with one cycle denoting one time frame. The
temporal extent of the data used to perform Fourier transform is
longer than one period of the Alfvén wave in the system, and the
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Waves and strucutres in turbulence 861

Figure 1. Distributions of PSDs of Alfvén and slow modes in the wavenumber-frequency (k⊥ − kz − ω) space (urms = 0.41, Brms = 0.39, σ c = 0.62,
and β = 1.50). Left-hand panel: x-component of the Alfvén-mode velocity (VxAM). Right-hand panel: z-component of the slow-mode velocity (VzSM). The
background magnetic field is in the z-direction. In both subfigures, the orange surfaces denote the iso-surface of PSDs with the value of −2.00 (as displayed
in colour bar), and the blue surfaces with points show the theoretical dispersion relations of linear Alfvén (left-hand panel) and slow waves (right-hand panel)
at both directions. The colours on the planes of k⊥–kz with ω = 0 and kz–ω with k⊥ = 15 represent the iso-contours of PSD without projection. Both the
propagating waves and the non-propagating structures (ω ≈ 0) are visible.

temporal data cadence is about twice as fast as the fastest wave
crossing over one grid size. The longer temporal extent of the data
is tested and the results converge. In our implementations, the FFT
has been conducted with FFTW software (Frigo & Johnson 2005)
configured to run in parallel for the huge amount of 4D data. Here
we chose to run it with one process for one time frame/cycle.

It is noted that the method of 4D Fourier transform applied above
differs greatly from the slicing method appeared in Yang et al.
(2018b), which extracted the mode values along the direction of the
mean field (z-direction), and stacked the obtained profiles in time
sequence to obtain distance–time (z–t) or wavenumber–frequency
(kz–ω) diagrams at a fixed x, y point. The information explored
from the method of 4D Fourier transform are therefore far beyond
that from the slicing method, which will be illustrated in the below
section.

In the simulations we presented here, it turns out that the fast
modes consist of a very small amount of energy (Cho & Lazarian
2002; Yang et al. 2018b), so we will present only the results on
Alfvén and slow modes. Note that the mode decomposition method
described in Yang et al. (2018b) will decompose all the velocity
fluctuations into either one of the three modes, so the summation of
the kinetic energies in all Aflvén, slow and fast modes will recover
the total turbulent kinetic energy.

3 N U M E R I C A L R E S U LTS

We now present results concerning the waves and structures in
3D MHD compressible turbulence based on our simulations. Our
primary goals include demonstrating the features of both propa-
gating waves and non-propagating structures and their different
behaviours of spectral energy density in k-space in compressible
MHD turbulence.

Fig. 1 presents the power spectral density (PSD) distributions of
Alfvén and slow modes in the wavenumber–frequency (k⊥–kz–ω)
space for the base run, where we have used the x-component of
the Alfvén-mode velocity (VxAM) and the z-component of the slow-
mode velocity (VzSM) as representative quantities. It can be seen
that the driven fluctuations behave as three apparent main features:

First, there is significant energy in the fluctuations with ω �= 0
that are associated with the Alfvén and slow waves along linear
dispersion relations, indicating the evident presence of propagating
Alfvén and slow waves in MHD turbulence. We refer them as
‘waves’ in the paper. This result is consistent with the previous
studies by Andrés et al. (2017). For the base run with a cross helicity
σ c = 0.62, although both the forward and counter-propagating
(larger power) Alfvén modes are injected at large scales, at the
steady state, curiously only one-direction Alfvén and slow waves
are visible from Fig. 1 (this direction is the same as the direction of
the dominant injected mode).

Secondly, there is also significant energy in the fluctuations on
the k⊥–kz plane with ω ≈ 0 in both the Alfvén and slow mode
components. These are non-propagating structures that display high
degree of anisotropy in k⊥–kz plane, and they have far more power
along the direction perpendicular to the background mean magnetic
field. We refer them as ‘structures’ in the paper. We also find
that, for various runs with the different cross-helicity σ c, plasma
β, and Alfvén Mach number MA, these main signatures do not
change much, except that for the balanced run (σ c = 0.01), the
dual-direction waves can be seen.

Thirdly, there is energy in the fluctuations that have ω �= 0 but
they do not satisfy the linear dispersion relations either. We refer
them as ‘residual turbulence’ in the paper.

To further illustrate the three main features of the driven fluctua-
tions in Fig. 1, we plot the PSD of the Alfvén-mode and slow-modes
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Figure 2. PSD distributions of the Alfvén-mode (left-hand panels) and
slow-modes (right-hand panels) on the ω–kz (up panels) and ω–k⊥ (low
panels) planes. Dashed lines are the theoretical linear dispersion relations
of Alfvén and slow waves.

Figure 3. Time ratio tA/tnl as a function of the perpendicular wavenumber
k⊥ at a given kz = 2, 3, 4, 5 for the turbulent kinetic energy.

on the ω–kz and ω–k⊥ planes in Fig. 2. These are essentially the same
as summing up all the k⊥ contributions and as summing up all the kz

contributions in Fig. 1. We can see that the PSD distributions in the
ω–kz plane overlap well with the theoretical dispersion relations of
linear Alfvén and slow waves, indicating that the fluctuations in the
parallel direction could be viewed as a superposition of linear waves,
while the PSD in the ω–k⊥ plane concentrate mainly at the small
frequency, pointing out that the fluctuations in the perpendicular
directions could be a manifestation of structures. It is noted that the
fluctuations could behave as field-aligned waves and 2D structures
in the perpendicular directions, which could not been revealed by
the method in Yang et al. (2018b).

To see whether the presented numerical experiment is in the
strong turbulent regime or in a mixed weak/strong regime, Fig. 3
displays the ratio tA/tnl as a function of k⊥ at a given kz = 2, 3, 4, 5
for the turbulent kinetic energy, where tA is the linear characteristic
time, defined as tA = kzB0, with B0 being the large-scale mean field,
and tnl is the non-linear characteristic time, defined as tnl = k⊥b, with
b = √

2kzk⊥Ev(k⊥, kz) and Ev(k⊥, kz) being bi-dimensional kinetic

energy spectrum (Meyrand, Galtier & Kiyani 2016; Meyrand et al.
2018). From this figure, it can be seen that, at large scales, tA/tnl is
far less than 1, suggesting that it is in the weak turbulence regime.
As the scales decrease, tA/tnl increases quickly. At k⊥ = 10, it
nearly comes to a plateau, with its value approaching unity (≥0.1)
as kz increases, suggesting that it is nearly in the strong turbulence
regime.

Fig. 4 shows the spatial energy spectrum of turbulent kinetic
energy Ek as a function of wavenumber k, k⊥ and kz, respectively,
for both Alfvén (top row) and slow (bottom row) modes, using
the outputs from the base run. The wave component comes from
all fluctuations in the k⊥–kz–ω space within an angle of 7◦ (both
upwards and downwards) of the linear dispersion relations of Alfvén
and slow waves. We have tested that with the angle greater than
7◦, the results presented here converge. On the other hand, the
structure component comes from all fluctuations on the plane of
ω = 0.

In each plot, we include three curves, which represent the PSD
components of the waves (red), structures (blue), and the total
(black), respectively. It can be seen that the spectrum of the total
Alfvén and slow modes (black curves in the left and middle
columns) follow a Kolmogorov-like −5/3 spectrum. Most of the
power is along the k⊥. All of these results are consistent with
expectations for MHD turbulence.

One notable result from this analysis, however, is the relative
contribution by structures and waves changes as a function of k.
From the injection scale through most of the inertial range, the
power spectra in k or k⊥ are dominated by the structures at large
scales, but as k or k⊥ increases, the contribution from waves seems
to become comparable with or even overtake that of structures at
k (k⊥) > 20–30. This is due to the fact that the spectrum of the
structure component is ∼k−2, steeper than the spectrum of the wave
component, which is ∼k−5/3 for the Alfvén modes.

Fig. 4 also shows that, along the parallel wavenumber kz, the
power of the waves is dominating at all scales for both Alfvén
and slow modes. This means again that, in the parallel plane the
fluctuations can be thought more as waves, and in the perpendicular
plane, the fluctuations can be seen as 2D structures (Matthaeus,
Goldstein & Roberts 1990; Zank & Matthaeus 1992).

To demonstrate the properties of the structures and waves in
compressible MHD turbulence, we now present analysis of their
spatial properties in detail. We first look at the structures with ω = 0.
Based on the 4D spatial-temporal Fourier transform using each
physical variable such as VxAM, BxAM, ρ, etc., we first filter their
power spectra with frequency, choosing only those with ω = 0.
Then, an inverse Fourier transform is conducted to get the purely
non-propagating structures distributed in real space. These steps
were carried out for both the incompressible Alfvén-mode and
compressive slow-mode structures.

The four panels of Fig. 5 display the distributions of the
Alfvén-mode structures VxAM, BxAM, VyAM, and ByAM on the z–y
planes. Both the strong spatial correlation between the velocity and
magnetic components and the similar magnitudes of these quantities
demonstrate that these ω = 0 fluctuations satisfy the Alfvén-mode
polarization relations. Similarly, the four panels of Fig. 6 show the
distributions of the slow-mode structures Vz, Bz, B, and ρ on the
x–y planes. Vz is anticorrelated with density ρ, but is correlated
with Bz and the total B. These features conform to the slow-mode
polarization relations, even when they are not propagating. Both
Figs 5 and 8 tell us that a significant portion of the incompressible
structures are Alfvénic in nature, and the compressible structures are
the slow-mode nature. Furthermore, we have analysed the spatial
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Figure 4. Spatial turbulent kinetic energy spectra as a function of the total wavenumber k (left-hand panels), perpendicular wavenumber k⊥ (middle panel),
and parallel wavenumber kz (right-hand panel). The upper and lower rows are for Alfvén modes (AM) and slow modes (SM), respectively. For each mode, the
blue, red, and black curves show the energy in structures, in waves, and in total, respectively. For reference, −5/3 and −2 power-law spectra are plotted as pink
and green lines, respectively.

Figure 5. Spatial distributions of the incompressible Alfvén-mode struc-
tures (ω = 0) shown by VxAM, BxAM, VyAM, and ByAM on the z–y plane
(parrel to the mean background magnetic field).

correlations for non-propagating structures in different wavenumber
k ranges by using either low-pass or high-pass filters in k. We have
again found high degrees of correlations, as expected. This confirms
that such properties exist in both the injection range and the inertial
range.

Figure 6. Spatial distributions of the compressive slow-mode structures
(ω = 0) shown by Vz, ρ, Bz, and B on the z–y plane (parrel to the mean
background magnetic field).

Fig. 7 shows a comparison of the Alfvén-mode velocity (VxAM)
among the Alfvén modes with all frequencies, Alfvén-mode struc-
tures with ω = 0, and Alfvén modes with ω �= 0. The Alfvén modes
with all frequencies denote a single actual picture of one state at
one given time. We can see that the Alfvén-mode structures preserve
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Figure 7. Spatial distributions of the Alfvén-mode velocity (VxAM) for the Alfvén modes with all frequencies ω (left-hand panel), Alfvén-mode structures
with ω = 0 (middle panel), and Alfvén modes with ω �= 0 (right-hand panel) at an instantaneous time on the x–y plane (perpendicular to the mean background
magnetic field).

Figure 8. PSD distributions of the Alfvén-mode velocity (VxAM) for the identified Alfvén waves (left-hand panel) and the slow-mode velocity (VzSM) for the
identified slow waves (right-hand panel) on the θ–k plane. θ is the angle between wave vector k and the large-scale mean magnetic field B0.

many of the features appeared in the total Alfvén modes. Compared
with the Alfvén modes with ω �= 0, the Alfvén-mode structures
behave as the large-scale structures. These results are consistent
with the energy spectra distribution that the structures contribute
to most of turbulence energy at the large scales, as shown in
Fig. 4.

Next, we investigate how the wave propagation direction varies
as a function of k. For a given wave component, we define θ as the
angle between its wave vector k and the large-scale mean magnetic
field B0. Using the velocity variations as the analysis variables,
Fig. 8 shows the PSD distributions of the identified Alfvén and slow
waves on the θ–k plane for the basic run, where we can see that the
power of the identified Alfvén and slow waves mainly concentrates
at the large angles to B0. As k increases, the concentration around
θ = 90◦ is more evident, implying that most of the waves at large
k are propagating nearly perpendicular to B0. Furthermore, as k
increases, the power in waves with θ > 90◦ is much larger than
that those with θ < 90◦. This means that the identified Alfvén and
slow waves at shorter wavelengths become quasi-perpendicular and
are predominantly in one direction (highly imbalanced), consistent
with the results shown in Fig. 1.

To further illustrate how the relative contributions from wave and
structure components vary as a function of k, we have plotted the
power percentage of each component separately in Fig. 9. Fig. 9
presents the power percentages of the waves and structures for the
runs with the different cross-helicity σ c. For all three cases, as
wavenumber k increases, the power percentages of the Alfvén and
slow waves rise quickly from about k = 3 to about k = 20, after which
the power percentages of the Alfvén and slow waves keep steady.
Different from these waves’ behaviour, the power percentages of
the Alfvén-mode and slow-mode structures drop quickly from about
80 per cent at k = 3 to about 20 per cent at k = 20. As the imbalance
rises, the power percentages of the Alfvén and slow waves go up at
small scales, while the power percentages of the Alfvén-mode and
slow-mode structures decline.

To see wave signatures in the strong turbulence, Fig. 10 presents
PSD distributions of Alfvén modes in the wavenumber–frequency
space, spatial turbulent kinetic energy spectra and time ratio tA/tnl

for the run with urms = 0.62, Brms = 0.54, σ c = 0.42, and β = 0.38.
It shows that the turbulent kinetic energy spectra display a power
law, with a slope of about −5/3, and the non-linear characteristic
time tnl is of the order of the linear characteristic time tA beyond
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Figure 9. Power percentages of the waves and structures for the runs with
different cross-helicity σ c. Upper panels: Relative power percentage of the
Alfvén waves (left) and the Alfvén-mode structures (right). Lower panels:
Relative power percentage of the slow waves (left) and the slow-mode
structures (right).

k⊥ = 10, suggesting that it is in the strong turbulence regime.
However, wave signatures are still visible in the spatial-temporal
domain, as displayed by the PSD distributions of Alfvén modes in
the wavenumber–frequency space.

4 SUMMARY AND DISCUSSION

We have carried out several 3D strong, compressible MHD turbu-
lence simulations with a large-scale mean magnetic field. Simula-
tion runs have plasma β near unity and various cross-helicity σ c

from 0.01 to 0.62. The turbulent driving is taken to be strong with
both Brms/B0 and urms/VA ∼ 0.4 and ∼0.6. At steady state, the total
turbulent energy spectra reach the typical behaviour that varies as
k−5/3 with power predominantly along the k⊥ direction. In this paper,

we focus on separating the signatures of the propagating waves
and the non-propagating structures in compressible turbulence.
To realize this, the 4D Fourier transform in x–y –z–t space is
implemented to get the power of the perturbed velocities and
magnetic fields of the Alfvén and slow modes over the full spectral
domain of wave vector k (k⊥, kz) and frequency ω. Here, we list
our key findings:

(i) Overall, out of the total turbulent fluctuations summing
over all wavenumbers, about 77 per cent are in non-propagating
structures with ω = 0, about 14 per cent are in propagating waves
that satisfy the linear dispersion relations, and about 9 per cent are
in ‘residual turbulence’, that have ω �= 0 but do not satisfy the linear
dispersion relations either. In addition, the energy in Alfvén modes
dominates over the energy in slow modes, and the energy in fast
modes is negligible.

(ii) The PSD spectra for the Alfvén waves and structures are
distinctly different. Whereas the Alfvén structures dominate at small
k (k⊥), they have a spectral slope ∼k−2 versus the wave component
which has a spectral slope of ∼k−5/3. This implies that, as k (k⊥)
increases, the wave component becomes increasingly important. In
fact, the contributions to the total power spectra from structures and
waves become comparable for k(k⊥) > 20. Very similar behaviour
is observed for the slow modes, with an even flatter spectral energy
distribution for the slow wave component, suggesting its dominance
at large k. In addition, as the cross-helicity σ c increases, the ratio
of power in the Alfvén and slow waves over structures increases as
well.

(iii) The fluctuations in the perpendicular directions are a man-
ifestation of structures, while along the parallel direction (kz), the
fluctuations are dominated by waves.

(iv) Detailed polarization analyses show that a significant portion
of the incompressible structures are the Alfvénic nature, and the
compressible structures are slow mode.

(v) For the large σ c base run, the waves with large k(k⊥) are even
more imbalanced, predominantly propagating in one direction and
nearly perpendicular to B0.

The simulation is done on an unmoving frame, and the average of
the resulted velocity is zero. Relative to the propagating waves, the

Figure 10. Left-hand panel: Same as Fig. 1 but for the strong turbulence run (urms = 0.62, Brms = 0.54, σ c = 0.42, and β = 0.38), and the isosurface of
PSDs is at the value of −1.50. Right-hand panel: Spatial turbulent kinetic energy spectra (black line) and time ratio tA/tnl (green line) as a function of the
perpendicular wavenumber k⊥ for the strong turbulence run.
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diagnosed structures are called ‘non-propagating’, which means
that the frequency of the structures is zero. Actually, as the Sun
rotates and the solar wind propagates outwards, the structures are
comoving with the solar wind. Here, like many authors (Greco
et al. 2009; Boldyrev et al. 2011; Zhdankin et al. 2012; Beresnyak
2014), we aim to see local spots of solar wind turbulence, with the
simulation domain far smaller than the Solar-terrestrial distance. To
approach the real state of solar wind turbulence, the expansion and
propagation of solar wind may need to be considered, as Grappin &
Velli (1996), Dong, Verdini & Grappin (2014), and Verdini &
Grappin (2015) did.

The ‘weak turbulence’ approach postulates that turbulence might
be described, in a leading order fashion, as an ensemble of waves.
Here, we showed that out of the total turbulence energy, the
structures with ω = 0 are dominant (∼77 per cent), which conforms
to solar wind observation that about 85 per cent of the energy is in
2D component (Bieber et al. 1996), so that we could not apply the
weak turbulence arguments here. Our results are also consistent
with the excellent work by Parashar et al. (2010), who found that
in the limit of strong turbulence, 2.5D hybrid kinetic behaviour is
dominated by feature-less ‘zero frequency’ behaviour

The key results on different behaviour in spectral domain for
waves and non-propagating structures need to be studied with
even higher resolution simulations. The fact that both waves and
structures are universal in compressible MHD turbulence is quite
interesting, and it potentially provides a new perspective in under-
standing the non-linear cascade process through the inertial range.
In particular, the increasing importance of the wave component
at small scales might open up new regimes for understanding
turbulence in these scales. This could have important implications
for understanding particle-turbulence interactions at small scales as
well.
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