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Abstract Numerical reconstruction/extrapolation of the coronal nonlinear force-free mag-
netic field (NLFFF) usually takes the photospheric vector magnetogram as input at the bot-
tom boundary. The magnetic field observed at the photosphere, however, contains a force
that is in conflict with the fundamental assumption of the force-free model. It also contains
measurement noise, which hinders the practical computation. Wiegelmann, Inhester, and
Sakurai (Solar Phys. 233, 215, 2006) have proposed to preprocess the raw magnetogram
to remove the force and noise to provide better input for NLFFF modeling. In this paper
we develop a new code of magnetogram preprocessing that is consistent with our extrap-
olation method CESE–MHD–NLFFF (Jiang, Feng, and Xiang in Astrophys. J. 755, 62,
2012; Jiang and Feng in Astrophys. J. 749, 135, 2012a). Based on the magnetic-splitting
rule that a magnetic field can be split into a potential-field part and a non-potential part,
we split the magnetogram and dealt with the two parts separately. The preprocessing of
the magnetogram’s potential part is based on a numerical potential-field model, and the
non-potential part is preprocessed using the similar optimization method of Wiegelmann,
Inhester, and Sakurai (2006). The code was applied to the SDO/HMI data, and results show
that the method can remove the force and noise efficiently and improve the extrapolation
quality.

Keywords Magnetic fields, corona · Magnetic fields, photosphere · Nonlinear force-free
field (NLFFF) · Preprocessing

1. Introduction

Magnetic-field extrapolation is an important tool for studying the three-dimensional (3D)
solar coronal magnetic field, which is difficult to measure directly (Sakurai, 1989; Aly, 1989;
Amari et al., 1997; McClymont, Jiao, and Mikic, 1997; Wiegelmann, 2008; DeRosa et al.,
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2009). The models that are most often used for field extrapolation are the potential-field
model, the linear force-free-field model, and the nonlinear force-free-field (NLFFF) model.
These models are all based on the assumption that the Lorentz force is self-balancing in
the corona, but they adopt different simplifications of the current distribution. Among these
models, the NLFFF model is the most precise one for characterizing magnetic field in the
low corona, where there is significant and localized electric current, especially in active
regions.

It is routine to use the vector magnetograms observed on the photosphere as input for the
NLFFF extrapolation, at least in most of the available extrapolation codes (e.g., Wheatland,
Sturrock, and Roumeliotis, 2000; Wiegelmann, 2004; Amari, Boulmezaoud, and Aly, 2006;
Valori, Kliem, and Fuhrmann, 2007; Jiang and Feng, 2012a; Jiang, Feng, and Xiang, 2012;
Inoue et al., 2011).1 This poses a basic problem (and also a major headache) to the force-
free-field modelers, however, because the magnetic field in the photosphere is significantly
forced by the plasma (Metcalf et al., 1995), which is in conflict with the fundamental as-
sumption of force-freeness. From the photosphere to the corona, the magnetic field passes
through a highly stratified and inhomogeneous plasma environment with plasma β varying
abruptly from >1 to �1 (Gary, 2001); thus the force-free condition cannot be fulfilled
globally. By studying the observed chromospheric field in a sampled active region, Metcalf
et al. (1995) concluded that the magnetic field is not force-free in the photosphere, but be-
comes force-free roughly 400 km above the photosphere. A recent statistical study by Liu
et al. (2013) using a large number of magnetograms from Huairou Solar Observing Station
arrived at similar conclusions.

This complication leads to the desire to use measurements of the vector field in the force-
free upper chromosphere instead. However, the vector field is not as easily measured in the
chromosphere as in the photosphere. Even if the chromospheric field is measured, it is still
challenging to extrapolate it since the surface on which any particular magnetically sensi-
tive line will form varies in time and space, and in particular the height will be different
along different lines of sight. Therefore one cannot assume that the vector field is given on
a plane or sphere at the bottom of the extrapolation volume, as for the photospheric magne-
tograms. The practical use of the chromospheric magnetograms as boundary conditions for
extrapolations is still to be explored.

As an alternative way to alleviate the problem, one can consider modifying the photo-
spheric magnetograms to simulate the force-free chromospheric magnetograms, which was
first suggested by Wiegelmann, Inhester, and Sakurai (2006). Since the interface between
the photosphere and the bottom of the force-free domain is very thin (about 400 km), espe-
cially when compared with the spatial scale of the coronal field (about tens of megameters),
the basic field-structures of the chromosphere are probably very similar to those of the pho-
tosphere, except that i) there must be some smoothness of the structures due to the fast
expansion of field from the high-β to low-β regions, and ii) the very fine magnetic elements
are just closed within this interface and thus show no signal in the force-free domain. There-
fore, modifications that need to be made on the photospheric field to mimic the force-free
chromospheric field ought to be insignificant and can hopefully be made within or at about
the error margins of the measurement.

1There are also some NLFFF models that use only the line-of-sight component of the photospheric field,
along with constraints from other observed information such as the EUV loops, filament channels, and X-
ray sigmoid structure (e.g., Bobra, van Ballegooijen, and DeLuca, 2008; Su et al., 2009; Aschwanden et al.,
2012).
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The procedure of modifying a raw photospheric magnetogram to a force-free chromo-
spheric one is called preprocessing (Wiegelmann and Neukirch, 2006; Fuhrmann, Seehafer,
and Valori, 2007; Metcalf et al., 2008; Fuhrmann et al., 2011; Yamamoto and Kusano, 2012).
To guide the preprocessing, there are constraints that must be fulfilled by the target magne-
togram. On the boundary surface S of an ideally force-free field B in a volume V , the field
satisfies the following necessary conditions2

Fx =
∫

S

BxBz dx dy = 0, Fy =
∫

S

ByBz dx dy = 0,

Fz =
∫

S

EB dx dy = 0, Tx =
∫

S

yEB dx dy = 0, Ty =
∫

S

xEB dx dy = 0, (1)

Tz =
∫

S

(yBxBz − xByBz)dx dy = 0,

where EB = B2
x + B2

y − B2
z . These expressions are derived from the volume integrals of the

total magnetic force and torque (Aly, 1989; Sakurai, 1989; Tadesse, 2011)

0 =
∫

V

j × B dV =
∫

V

∇ · T dV =
∫

S

T dS,

0 =
∫

V

r × (j × B)dV =
∫

V

∇ · T′ dV =
∫

S

T′ dS,

(2)

where T is magnetic stress tensor

Tij = −B2

2
δij + BiBj (3)

and T′
ij = εiklrkTlj . Generally, the surface integration has to be carried out over a closed vol-

ume, but in preprocessing magnetograms to extrapolate a computational cube, the surface
integrals of Equation (2) are usually restricted within the bottom magnetogram since the
contribution from other (side and top) boundaries is small and negligible, and in the follow-
ing S will represent only the area of magnetograms. With this assumption, Equation (1) is
the component form of the surface integrals in Equation (2). The first task of preprocessing
accordingly is to drive the raw magnetogram to fulfill the constraints of Equation (1) and
thus to be closer to an ideally force-free magnetogram. This task is also dubbed removing
the force in the forced magnetogram. The second task of preprocessing is to smooth the raw
data to mimic the field expansion. Smoothing is also very necessary for the practical com-
putation based on the numerical difference with the limited resolution, which cannot resolve
small enough structures in the raw data. In addition, smoothing can remove measurement
noise and increase the signal-to-noise ratio.

Several preprocessing codes (Wiegelmann, Inhester, and Sakurai, 2006; Fuhrmann, See-
hafer, and Valori, 2007; Metcalf et al., 2008) have been developed. They share the basic
approach proposed by Wiegelmann, Inhester, and Sakurai (2006). A functional L is de-
signed by summing the χ2 deviations from the constraints of Equation (1), the terms that
control the deviation from the raw data and the smoothness with different weights, e.g.,

L = μ1L1 + μ2L2 + μ3L3 + μ4L4, (4)

2The necessary conditions mean that even fulfilling these conditions, the magnetogram may still contain
force; but magnetograms that fulfill these conditions are certainly better input for the NLFFF model than
those that do not.
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where μ is the weighting factor, L1 = F 2
x + F 2

y + F 2
z , L2 = T 2

x + T 2
y + T 2

z , L3 =∫
S
|B − Bobs|2 ds, and L4 measures the roughness of the data. Then the target magnetogram

is searched by minimizing the functional L using an optimization method. Different al-
gorithms of smoothing and optimization have been used and the results are more or less
different, as shown in a comparison study by Fuhrmann et al. (2011). The differences can
also result from different choices of the weighting factors.

Within this framework of preprocessing, two problems are only poorly addressed,
namely, to what extent the force needs to be removed and to what extent the smoothing
can be performed. We consider these problems from both numerical and physical points of
view. Ideally, we prefer the map to satisfy the force-free constraints precisely, but this condi-
tion need not be so strictly satisfied because a numerical discretization error is unavoidable
in an extrapolation with finite resolution. The smoothing also ought not to be made arbi-
trarily if we aim to mimic the expansion of the field from the photosphere to some specific
height above. Too much smoothing of the data may smear the basic structures while too little
smoothing cannot filter the small-scale noise sufficiently. A careful choice of the weighting
factors μ is required to deal with these problems.

This paper is devoted to handling these problems in the preprocessing. We used the values
of force-freeness and smoothness calculated from a numerical potential-field solution at
some height above the photosphere as a reference to guide the preprocessing. Based on the
simple rule that any magnetic field can be split into two parts, a potential field and a non-
potential field, we developed a new preprocessing code using this magnetic-field splitting
that is consistent with our extrapolation code CESE–MHD–NLFFF (Jiang and Feng, 2012a;
Jiang, Feng, and Xiang, 2012). We show below how the raw magnetogram can be driven
to be force-free and smooth with the same level as that of the numerical potential field at a
height of roughly 400 km above the photosphere, i.e., the bottom of the force-free domain.
The remainder of the paper is organized as follows. In Section 2 we give the basic method
and formulas and show how the weighting factors are chosen in Section 3. We then apply
the method to preprocess two sampled magnetograms taken by SDO/HMI and analyze the
results in Section 4. Finally, discussion and conclusions are given in Section 5.

2. Method

Generally, the coronal magnetic field can be split into two parts: a potential field matching
the normal component of the bottom magnetogram, and a non-potential part with the normal
field vanishing at the bottom. Particularly, for the vector magnetogram, the magnetic field B
can be written as

B = B0 + B1 = (B0x + B1x,B0y + B1y,B0z), (5)

where (B0x,B0y,B0z) are the components of the potential part B0 and (B1x,B1y) are the
components of the non-potential part B1. Note that B0z = Bz and B1z = 0.

Assuming that B is a force-free magnetogram, and because its potential part B0 already
fulfills the force-free conditions of Equation (1), we can derive special force-free conditions
for its non-potential part (B1x,B1y), which are expressed as∫

S

B1xB0z dx dy = 0,

∫
S

B1yB0z dx dy = 0,

∫
S

�B dx dy = 0,

∫
S

x�B dx dy = 0,

∫
S

y�B dx dy = 0, (6)
∫

S

(yB1xB0z − xB1yB0z)dx dy = 0,
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where we denote �B = B2
1x +B2

1y + 2(B0xB1x +B0yB1y). The derivation is straightforward,
for example

EB = (B0x + B1x)
2 + (B0y + B1y)

2 − B2
0z

= EB0 + B2
1x + B2

1y + 2(B0xB1x + B0yB1y) = EB0 + �B, (7)

and we have ∫
S

�B dx dy =
∫

S

EB dx dy −
∫

S

EB0 dx dy = 0. (8)

All other expressions in Equation (6) can be derived easily in a similar way.
Let B (Bx,By,Bz) denote the observed photospheric field, i.e., the raw magnetogram,

and its splitting form is

B = B0 + B1 = (B0x + B1x,B0y + B1y,B0z), (9)

with B0 and B1 denoting the potential and non-potential parts, respectively. Here B0 is com-
puted based on Bz using the potential-field model, and from this B1 is obtained. The com-
putation of a potential field needs only the normal component of the field on the bottom and
is now a trivial task, which can be carried out conveniently by using the Green’s function
method (Metcalf et al., 2008) or other much faster schemes (Jiang and Feng, 2012b).

Generally, B1 does not fulfill the force-free conditions of Equation (6). For the case with-
out smoothing, we only need to let B0 = B0 and reduce the non-potential part B1 to B1 to sat-
isfy Equation (6). For the purpose of smoothing, B0 is obtained by taking the data at a plane
just one pixel above the photosphere from the 3D potential field extrapolated from the ob-
served B0z. This is suitable for the SDO/HMI data, which have a pixel size of about 360 km
(i.e., 0.5 arcsec), an approximate height above which the coronal field becomes force-free
according to Metcalf et al. (1995). For magnetograms with other pixel sizes, we need to take
the potential field data at a given physical height (where the force-free assumption becomes
valid, e.g., 400 km) and not necessarily one pixel above the photosphere. The potential part
B0 obtained in this way can be regarded as the potential part of the chromospheric field, also
a preprocessed counterpart of B0. Of course, if measurements of chromospheric longitudi-
nal fields are available (e.g., Yamamoto and Kusano, 2012), we recommend using these data
directly to construct the potential part B0, which is certainly preferred over that based on the
photospheric B0z.

The second task, reducing B1 to B1, is carried out using an optimization method similarly
to Wiegelmann, Inhester, and Sakurai (2006). We intend to minimize the total magnetic force
and torque, which are quantified by

L1 = L2
11 + L2

12 + L2
13, L2 = L2

21 + L2
22 + L2

23, (10)

where for convenience of presentation we denote

L11 ≡
∑

p

B1xB0z, L12 ≡
∑

p

B1yB0z, L13 ≡
∑

p

�B, (11)

L21 ≡
∑

p

x�B, L22 ≡
∑

p

y�B, L23 ≡
∑

p

(yB1xB0z − xB1yB0z). (12)

Here the summation
∑

p is over all the pixels of the magnetogram, and these summations
are the numerical counterparts of the integrals in Equation (6).

The observation term L3 (to restrict the deviation from the observed data) and the
smoothing functional L4 (to control the smoothness) are also considered by Wiegelmann,
Inhester, and Sakurai (2006),
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L3 =
∑

p

[
(B1x − B1x)

2 + (B1y − B1y)
2
]
,

L4 =
∑

p

[
(�B1x)

2 + (�B1y)
2
]
,

(13)

where � is a common five-point 2D-Laplace operator, i.e., for the pixel (i, j)

�Bi,j ≡ Bi+1,j + Bi−1,j + Bi,j+1 + Bi,j−1 − 4Bi,j . (14)

This simply states that the smaller L4, the smoother the data.
Additionally, the above functionals L� (where � = 1,2,3,4) are normalized by N�, which

are given by

N1 =
(∑

p

|B|2
)2

, N2 =
(∑

p

√
x2 + y2|B|2

)2

,

N3 =
∑

p

(
B2

x + B2
y

)
, N4 =

∑
p

[
(�B1x)

2 + (�B1y)
2
]
,

(15)

where

�Bi,j ≡ Bi+1,j + Bi−1,j + Bi,j+1 + Bi,j−1 + 4Bi,j . (16)

We used the steepest-descent method (Press et al., 1992) to minimize the weighted aver-
age of the above functionals,

L =
4∑

�=1

μ�

N�

L�, (17)

where μ� is the weighting factor. Generally, the weighting factors for the magnetic force
and torque are simply given by μ1 = μ2 = 1 since there is no obvious reason for a bias on
one of these two quantities. The determination of μ3 and μ4 is described in the next section,
and different combinations of them are tested for two HMI magnetograms to search for the
best choice in Section 4.

Since L is an explicit functional of the arguments (B1x,B1y), its gradient ∇L can be
expressed at each pixel q as

∂L

∂(B1x)q

= 2
μ1

N1

[
L11(B0z)q + L13(2B1x + 2B0x)q

]

+ 2
μ2

N2

[
L21(2xB1x + 2xB0x)q + L22(2yB1x + 2yB0x)q + L23(yB0z)q

]

+ 2
μ3

N3
(B1x − B1x)q + 2

μ4

N4

(
�(�B1x)

)
q
, (18)

∂L

∂(B1y)q

= 2
μ1

N1

[
L12(B0z)q + L13(2B1y + 2B0y)q

]

+ 2
μ2

N2

[
L21(2xB1y + 2xB0y)q + L22(2yB1y + 2yB0y)q + L23(−xB0z)q

]

+ 2
μ3

N3
(B1y − B1y)q + 2

μ4

N4

(
�(�B1y)

)
q
. (19)

The procedure of the steepest descent is performed as follows. We start from an initial guess
(B0

1x,B
0
1y), e.g., the observed data (B1x,B1y), and march the solution in each iteration k

along the steepest-descent direction (i.e., opposite to the gradient direction) by
(
Bk+1

1x

)
q
= (

Bk
1x

)
q
− λk

∂L

∂(Bk
1x)q

,
(
Bk+1

1y

)
q
= (

Bk
1y

)
q
− λk

∂L

∂(Bk
1y)q

. (20)
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It is important to choose a proper step size λk at each step to maximize the local descent.
This can be determined by a bisection line-search algorithm to solve the one-dimensional
optimization problem at every iteration

λk = arg minL
(
Bk

1 − λ∇L
(
Bk

1

))
. (21)

The iteration is terminated if the maximum residual of the field [res(B1)]max, defined by[
res(B1)

]
max

= λk max
[∇L

(
Bk

1

)]
, (22)

is smaller than 0.1 gauss (G) for ten successive steps.

3. Choice of the Weighting Factor μ

A careful choice of the best weighting factors μ is critical for a good performance of the pre-
processing. Using the qualities of force-freeness and smoothness of the numerical potential
part B0 as a reference, we guide the optimization of μ according to the follow constraints:

i) The residual force and torque in the target magnetogram B should be reduced to the
same order as those in B0.

ii) The smoothness of the target magnetogram B should reach the same level as that of
B0 (since Bz = B0z, the smoothness of Bx and By should match that of Bz. This is
reasonable since there is no preference for any component of the vector).

iii) With the constraints i) and ii) fulfilled, the deviation between the target magnetogram B
and the observed data B should be minimized.

Within the constraints the residual magnetic force and torque of the data are quantified
by two parameters, εforce and εtorque, defined as usual

εforce = |∑p BxBz| + |∑p ByBz| + |∑p EB |∑
p(B

2
x + B2

y + B2
z )

, (23)

εtorque = |∑p xEB | + |∑p yEB | + |∑p(yBxBz − xByBz)|∑
p

√
x2 + y2(B2

x + B2
y + B2

z )
, (24)

and the smoothness of component Bm (m = x, y, z) is measured by

Sm =
∑

p

[
(�Bm)2

]
/
∑

p

[
(�Bm)2

]
. (25)

In addition to these constraints the total iteration steps needed for the computation are
also considered if the magnetogram’s resolution is very high, since the computing time of
the preprocessing may be very long.

4. Preprocessing the SDO/HMI Magnetograms

In this section we apply the preprocessing code to several magnetograms taken by
SDO/HMI, and search for the best values for the weighting factors. The Helioseismic and
Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides photo-
spheric vector magnetograms with a high resolution in space and time. It observes the full
Sun with a 4k×4k CCD whose spatial sampling is 0.5 arcsec per pixel. Raw filtergrams are
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Figure 1 The observed vector magnetograms for AR 11283 at 05:36 UT on 8 September 2011 and AR
11429 at 00:00 UT on 7 March 2012. The background shows the vertical components with saturation values
of ±1000 G; the vectors represent the transverse field, and only the field stronger than 200 G is plotted. The
length unit is 0.5 arcsec.

obtained at six different wavelengths and six polarization states in the Fe I 6173 Å absorp-
tion line, and are collected and converted to observable quantities (such as Dopplergrams,
continuum filtergrams, and line-of-sight and vector magnetograms) on a rapid time cadence.
For the vector magnetic data, each set of filtergrams takes 135 s to be completed. To ob-
tain vector magnetograms, Stokes parameters are first derived from filtergrams observed
over a 12-min interval and are then inverted through Very Fast Inversion of the Stokes Vec-
tor (VFISV; Borrero et al., 2011). The 180◦ azimuthal ambiguity in the transverse field
is resolved by an improved version of the minimum-energy algorithm (Leka et al., 2009).
Regions of interest with a strong magnetic field are automatically identified near real time
(Turmon et al., 2010). A detailed description on how the vector magnetograms are produced
can be found on the website http://jsoc.stanford.edu/jsocwiki/VectorPaper.

The raw magnetograms we used here were downloaded from http://jsoc.stanford.edu/
jsocwiki/ReleaseNotes2, where the HMI vector magnetic field data series hmi.B_720s_
e15w1332 are released for several active regions. There are two special formats, direct
cutouts and remapped images. We used the remapped format, which is more suitable for
modeling in local Cartesian coordinates, since the images are computed with a Lambert
cylindrical equal-area projection centered on the tracked region. For our test, we selected
two active regions, AR 11283 and AR 11429, both of which produced X-class flares and
thus were very non-potential. Figure 1 shows the magnetograms for AR 11283 at 05:36 UT
on 8 September 2011 and AR 11429 at 00:00 UT on 7 March 2012. The size of the magne-
tograms are 600 × 512 and 560 × 560 pixels, respectively.

In Figures 2 and 3 we show the preprocessing results with different sets of μ3 and μ4.
Since for such large magnetograms it is challenging to perform many tests with continuous
sets of weighting factors to pick the optimal factor, we only computed the results for sev-
eral groups of μ3 and μ4 as shown in the figures, i.e., μ3 = 1,0.1,0.01,0.001,0.0001,
and μ4 = 1,0.1,0.01,0.001. For each set of weighting factors, the normalized terms
Ll/Nl , the smoothness, and the force-free quality εforce and εtorque are plotted. By com-
paring the results with fixed μ3 but different μ4, we can see that the force-free parameters
L1/N1,L2/N2, εforce, and εtorque are almost entirely determined by μ3. When decreasing μ3,

http://jsoc.stanford.edu/jsocwiki/VectorPaper
http://jsoc.stanford.edu/jsocwiki/ReleaseNotes2
http://jsoc.stanford.edu/jsocwiki/ReleaseNotes2
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Figure 2 Preprocessed results
for the magnetogram of AR
11283 with different μ3 and μ4.
Results for different values of μ4
are plotted using different colors
and line styles, as denoted in the
top left panel. The dashed lines in
the top right and middle right
panels represent the parameter
values of the potential part B0,
which is used as the reference to
choose the optimal weights. They
are chosen such that
εforce, εtorque, Sx , and Sy are
close to those of B0, and L3/N3
is minimized.

i.e., allowing more freedom of modifying the raw data, L1 and L2 decrease very quickly
(their magnitude decreases quicker than that of μ3), but the residual force parameters εforce

and εtorque reach a minimum and cannot be reduced any further. This is because the poten-
tial part B0 has a non-zero value of εforce and εtorque (because of the numerical error of the
finite resolution), which is the minimum of εforce and εtorque that can be reached for the target
magnetograms. The results for both tests show that μ3 = 0.001 is small enough, which gives
εforce and εtorque nearly the same as those of B0, meaning that the force in the non-potential
part B1 is decreased near to, or below, the level of numerical error. Even smaller μ3 cannot
improve the quality of force-freeness, but deviates the target magnetograms farther away
from the original data. Accordingly, we set the optimal value as μ3 = 0.001. With a given
value of μ3, the smoothness values are controlled by μ4. Obviously, μ4 = 1 is a good choice,
which yields values of Sx and Sy very similar to Sz, meaning that the smoothness of the tar-
get magnetograms is consistent with their potential part B0. Our choice of the smoothness
weight is more physically correct than what has been assumed in other methods, for which
it has been given more or less arbitrarily.

The results of preprocessing the two magnetograms with the optimal weighting factors
μ3 = 0.001 and μ4 = 1 are summarized in Table 1. Figures 4 and 5 show a comparison of
the original and preprocessed magnetograms. Here the color-map is designed to manifest
both strong and weak fields. As shown, the map after preprocessing resamples the feature
of the original data, while small structures tend to be smoothed out. In the bottom of the
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Figure 3 Same as Figure 2, but
for AR 11429.

Table 1 Quality of the magnetograms. The preprocessed results are produced with the optimal weighting
factors μ3 = 0.001 and μ4 = 1. The parameter εflux is the total magnetic flux normalized by the total un-
signed flux.

Data εflux εforce εtorque Sx Sy Sz

AR 11283

Raw −7.88E–02 2.84E–01 2.38E–01 8.38E–03 1.28E–02 2.49E–03

Preprocessed −8.98E–02 1.02E–02 1.50E–02 1.55E–04 2.25E–04 1.92E–04

Numerical potential −8.98E–02 9.14E–03 1.40E–02 2.10E–04 1.78E–04 1.92E–04

AR 11429

Raw map −1.36E–02 1.82E–01 1.55E–01 3.76E–03 3.43E–03 1.21E–03

Preprocessed map −1.46E–02 3.98E–03 2.81E–03 7.52E–05 7.82E–05 8.61E–05

Numerical potential −1.46E–02 3.19E–03 2.96E–03 8.38E–05 8.53E–05 8.61E–05

figures we plot the results for the vertical current Jz, which was calculated by taking finite
differences of the transverse field

J i,j
z = B

i+1,j
y − B

i−1,j
y

2
− B

i,j+1
x − B

i,j−1
x

2
. (26)
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Figure 4 Comparison of the raw magnetogram and preprocessed magnetogram for AR 11283. The left
column lists the raw data, the middle column the preprocessed data, and the right column shows the absolute
differences between them. Rows from top to bottom are the three components of the data and the vertical
current Jz , respectively. On the images of the Bx , By , and Bz components are plotted the contour lines of
their zero values.
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Figure 5 Same as Figure 4, but for AR 11429.
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Figure 6 Histograms of the changes of the vector components for all the pixels between the raw and prepro-
cessed magnetograms. The horizontal axis represents the absolute values of the differences between the raw
and preprocessed data, the vertical axis represents the number of the pixels normalized by the total number.
The average changes are also labeled in the figure.

Figure 7 Evolutions of the functional with iterations in the optimization process. dBmax is the maximum
residual of the field in each iteration step, see Equation (22).

Since the numerical differences are very sensitive to noise, random noise in the data appears
more clearly in the Jz map, particularly in weak-field regions, and they are suppressed effec-
tively by the smoothing. Histograms are plotted in Figure 6 to show the distributions of the
absolute differences between the raw and preprocessed magnetograms over all the pixels.
Apparently, different approaches of modifying the data give different distributions, i.e., the
distribution for the z-component is distinct from those for the x- and y-components. This
is because the modification for Bz is determined solely by the potential model, while mod-
ifications for Bx,By are additionally made by the optimization process. The change in the
vertical field is less severe than that for the transverse field. This is consistent with the obser-
vation, which measures the line-of-sight component much more precisely than the transverse
field, and thus we have more freedom to modify the transverse field. Still, it should be noted
that here the potential-field model Bz may not approximate the real chromospheric Bz well,
which is preferred to be taken by direct measurements, if available.

We finally show in Figure 7 the iteration process in the optimization method. Only the
result for AR 11283 is plotted as an example. As shown, the functional L decreased very
quickly. After only 200 iteration steps, it almost reached its minimum, reduced by about
two orders of magnitude from its initial value. The sub-functionals L1 and L2 show a similar
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evolution, although with small oscillations, and the sub-functional L4 continually decreases,
but very slowly after 200 steps.

5. Conclusions

We have developed a new code of preprocessing the photospheric vector magnetograms for
NLFFF extrapolation. The method is based on the simple rule that any vector magnetogram
can be split into a potential-field part and a non-potential part, and we dealt with the two parts
separately. Preprocessing the potential part was simply performed by taking the data sliced
at a plane about 400 km above the photosphere from the 3D potential-field numerical so-
lution, which was extrapolated from the observed vertical field. Then the non-potential part
was modified by an optimization method to fulfill the constraints of total magnetic force-
freeness and torque-freeness. For the practical computation based on numerical discretiza-
tion, a strict satisfaction of force-free constraints is apparently not necessary. The extent of
the smoothing to be applied to the data needs to be carefully determined as well if we aim
to mimic the field expansion from the photosphere to some specific height above. We used
the values of force-freeness and smoothness calculated from the preprocessed potential-field
part as a reference to guide the preprocessing of the non-potential field part, i.e., we required
that the target magnetograms have the same level of force-freeness and smoothness as the
reference data. These requirements can restrict the values of the free parameters well, i.e.,
the weighting factors in the optimization functional. The code was applied to SDO/HMI
data. The preprocessed results showed that the method can efficiently remove the force and
noise if we choose the weighting factors properly. For two sampled HMI magnetograms,
we found that the optimal weights are μ3 = 0.001 and μ4 = 1, with which the target mag-
netograms can be driven to be force-free and smooth with the same level as that of the
numerical potential field at the bottom of the force-free domain.

The preprocessing code here was developed as a sub-program for a project of apply-
ing our extrapolation code CESE–MHD–NLFFF (Jiang, Feng, and Xiang, 2012; Jiang and
Feng, 2012a) to observed data. We applied CESE–MHD–NLFFF to SDO/HMI data with
both raw and preprocessed magnetograms (Jiang and Feng, 2013). By a careful compari-
son of the results, we found that the quality of extrapolation is indeed improved using the
preprocessed magnetograms, including the force-freeness of the results (e.g., measured by
a current-weighted mean angle between the magnetic field B and electric current J) and the
free-energy contents. For example, in the extrapolation of AR 11283, the mean angle be-
tween B and J for the entire extrapolation box of 600 × 512 × 300 pixels was reduced from
24◦ to 17◦ and the free energy was increased from ≈0.5 × 1032 erg to 1.0 × 1032 erg.
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