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N\ Introduction Wy

@ Observation
Intensity of Galactic cosmic rays (GCRs) measured during the
recent solar minimum was the highest ever recorded. We studied
CRs data on spacecrafts near the Earth and ground-based
neutron monitors, which indicate that the modulation of CRs is not
dominated by the mechanism of particle drift through current
sheet during this A < 0 cycle as we normally think.

@ Modulation
We use a model of GCRs transport in the three-dimensional
heliosphere based on a simulation of Markov stochastic process
to study the possible reasons. Our preliminary results show that it
is due to the weaker Interplanetary magnetic field and lower
perpendicular diffusion coefficient.
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)\ Brief introduction to GCR o

@ Solar magnetic field
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@ A" are times when the solar magnetic field is directed outward
from the sun in the northern polar and inward in the southern
polar region.
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N, Brief introduction to GCR

@ Transport through a wavy current sheet
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@ Diffusion with respect to the Parker spiral (left). The global drift
pattern of positively charged particles in A> 0 and A < 0 solar
magnetic epoch (right).
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N, Brief introduction to GCR

@ Solar modulation of GCRs

Electron Flux

Sunspot number

@ Both helium and electrons vary in anti-correlation with 11-year
solar activity cycle. In the A < 0, the time profiles of positively
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charged particles peaked, whereas they were more or less flat in

A> 0.
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Figure 1: monthly mean rates for NMs from 1980.01 to 2011.01; rates are
normalized to 100% for February of 1987.
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N\ Rigidity of NMs

@ Rome 6.27Gv

@ Apatity 5.6Gv

@ Hermanus 4.58Gv
@ Moscow 2.43Gv

@ Oulu 0.8Gv
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@ Jungfraujoch 4.49Gv
@ Climax 3Gv
@ Kiel 2.36Gv

@ Magadan 2.09Gv
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Figure 2: rates are normalized to 100% for March of 1987
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N Heavy ions on the ACE

Flux [p/(m?3-s-sr-Gev)]
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@ The number is the proton
number of partilce, they are
C,N,O,Ne,Na,Mg,Si,S,Fe.

@ | use annual mean hourly
rates data, this is the solar
minimum of cycle 24(2009).

@ Each ion has seven energy
ranges. We calculation annual
deviation to study.
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Figure 3: We calculate deviation every year for all heavy ions, 4/ (07\/@)2_ The
deviation vary in anti-correlation with 11-year solar activity cycle. And the
deviation in 24 solar cycle is much bigger and sharp than the one in 23 solar
cycle.
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50 0 0 @ We calculate annual ygas
s . deviation for all particies
L0 i (5-28) from 1997 to
% I 2010(blue line in bottom
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25 T T T T T T T
/
1996 1998 2000 2002 2004 2006 2008 2010 Y We use f — T(Z)f tO

concentrate flux of all

Z: particles together.
% 0.2 - T(z) = 10k(z—20) (1)
0.1 1 |

w . . .
00 ‘ ‘ ‘ : : ‘ : @ Deviation after processing
1996 1998 2000 2002 2004 2006 2008 2010

Year is the red line in bottom
panel. It is much smaller
comparing with before.

Figure 4: top:action; bottom:deviation
compare
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Figure 5: flux before processing in the

solar minimum 23 Figure 6: flux after processing
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N\ Deviation for all ions @y
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Figure 7: We calculate relative deviation between our modulated results and
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rare ions our modulation fit observation well.

. Except iron and some
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N\ Ulysses trace
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Figure 8: Three Ulysses fast latitude scans:first and third take place at solar
minimum and second one under solar maximum.
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X Proton on the Ulysses X
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Figure 9: From top to bottom are shown the daily averaged flux of 38-125 Mev
protons from 1990 to 2009 and the monthly averaged after data processing.
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N\ Proton on the IMP-8

proton--398.200 Mev

@ Monthly averaged data
of 400Mev proton on 8
the IMP-8 after dealing.
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@ The energy of Proton
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Figure 10: Monthly averaged after dealing
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“\) Pronton on the voyagert
proton, 176.63 Mev
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Figure 11: Daily averaged data of 176Mev proton on voyager1, available

energy is from 22Mev to 176Mev.
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Figure 12: blue:radius, red:latitude, green:longitude
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. ¢ -,
N Fokker-Planck transport equation o
Fokker-Planck equation J
of p of
E_—(V+Vd)-Vf+V'(H-Vf)+§(V-V)% (2)
with
@ Drift speed:
_ Yep B
Vdr = EV X ﬁ (3)
@ Diffusion coefficient:
b a
p\? (Be> I
_ L —e 4
K| = KB <p0) B (4)
b, a
P Be)
= = - 5
o =0 (£ (% ©)
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N\ Calculation of wavy CS

@ The current sheet
T , rQ2
90 = §+O[S|n (¢+V—W)
@ calculation of IMF

A .
B= r_2(e' —Tey)[1—2H(6 — b))
@ drift of wavy CS
= 6“2 Ysin(a + Abes)
with
Abcs = P/(80cos o)
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N\ Stochastic differential equation “»

We use Markov stochastic process to solve the transport equatioﬁf"’"""‘w"‘/
X(8), Y(s),Z(s),P(s) are time-backward stochastic processes
described by (U = V + V)

dx = (5?; - UX> ds -+ \/2r dWy(s) (10)

dy = (‘3:;; = Uy> ds + v/2k, AW, (s) (11)
0

dz = (;Z - Uz> ds + | /2r) dWy(s) (12)

do =5 (V- V) ds (13)

f(x,y.2,p. 1) = < /O "Q(X(). Y(s). Z(5). P(s). ) ds> (14)
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@ A simulated stochastic
process with Magnetic field
polarity gA < 0.

@ The radial distance, latitude,
and momentum of the
simulated particle are shown
as functions of backward time
S.

@ The process starts at 1AU in
the equatorial with 1GeVc™!
momentum and runs
backward in time until it exits
at 75 AU.
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N\ Latitude-longitude distribution

longitude and latitude distribution
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Figure 14: Latitude-longitude distribution of test particles for gA < 0.
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@ The same as figure 1, but for
gA >0

@ We note that the particle gains
more momentum than in the
case of gA negative.
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N\ Latitude-longitude distribution

longitude and latitude distribution
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Figure 15: Latitude-longitude distribution of test particles for gA < 0.
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N\ Flux variation with Energy
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Figure 16: Ideal model
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N\ Modulation of TA
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A\Y Transport parameter
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Figure 17: We use transport parameters carrying out a half year average

Lingling Zhao (CSSAR) April 21, 2011 30/32



N\ Ulysses modulation

i(E)e<p?i(p)
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3 Modulation result

i(E)e<p?i(p)

@ We use transport parameters
carrying out a half year
average of each interval in our
model of each solar minima.

- @ The observation data are
obtained from neutron monitor
and IMP-8.
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