Space Plasma Physics Fall 2023

Problem Set 4

Due date: Dec. 1, 2023

- 1. What is ratio of the magnetic energy density $\binom{B_1^2}{2\mu_0}$ to the kinetic energy density of the fluid motion $\binom{\rho_{m0}V_1^2}{2}$ for the shear Alfven wave? How about the same ratio for the magnetosonic (compressional Alfven) wave?
- 2. Consider the propagation of Alfven wave taking the displacement current into account. That is, start from the same equations as in the lectures but replace Ampere's law by

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

Derive the dispersion equation for the mode propagating perpendicular to the magnetic field into the form:

$$\frac{\omega^2}{k^2} = \frac{v_s^2 + v_A^2}{1 + v_A^2/c^2}$$

- 3. Under limits $V_A \gg V_S$ and $V_A \ll V_S$, (1) derive the phase speeds of fast and slow mode MHD waves, respectively; (2) Explain why a fast wave is a compressional Alfven wave when $V_A \gg V_S$, and why it is a longitudinal wave when $V_A \ll V_S$
- 4. Show that the plasma pressure and magnetic pressure fluctuations reinforce one another in the fast MHD wave, whereas the fluctuations oppose one another in the slow MHD wave.