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MHD Waves

• Alfven mode

• Fast and slow magnetosonic modes 



Representation of Waves

Any periodic motion of a fluid can be decomposed by Fourier 

analysis into a superposition of sinusoidal oscillations with different 

frequencies ω and wavelengths λ

When the oscillation amplitude is small, the waveform is general 

sinusoidal; and there is only one component. This is the situation 

we shall consider. 

Any sinusoidal oscillating quantity, say , the density n - , can be 

represented as follows:  𝑛 = 𝑛0exp[𝑖 𝒌 ∙ 𝒓 − 𝝎𝑡 ]

The time derivative Τ𝜕 𝜕𝑡 can therefore be replaced by −𝑖𝜔, and 

the gradient 𝛻 by  ik



For a neutral fluid like air, in absence of viscosity, the Navier-

Stokes equation is

From the equation of state
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Linearization of the momentum and continuity equations for 

stationary equilibrium 
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➢ For a neutral gas the sound waves are pressure waves 

propagating from one layer of particles to another one. Wave 

vector pointing normal to the pressure front.

➢ The propagation of sound waves requires collisions among 

the neutrals

➢ Magnetic field does not affect motion parallel to the field. 

Therefore sound waves can propagate with c s  at k//B

where m is the neutral atom mass and Cs is the sound 

speed.
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For a plane wave with k = kx, and v = vx, we find 



➢ MHD is a fluid theory and there are similar wave modes 

as in ordinary fluid theory (hydrodynamics). 

➢ In hydrodynamics the restoring forces for perturbations 

are the pressure gradient and gravity. 

➢ In MHD the pressure force leads to acoustic fluctuations, 

whereas Ampère’s force (JxB) leads to an entirely new class 

of wave modes, called Alfvén (or MHD) waves.

Alfven Waves

Studying disturbances propagating on the solar surface:

----Puzzle: not consistent with c s

----Conclusion: unknown wave mode exits in plasma.





➢Suppose that the magnetic field is 

approximately uniform, and 

directed along the z-axis.   The 

equation of motion reduces to

➢ The magnetic field increases the 

plasma pressure in perpendicular

directions to the magnetic field, and 

decreases the plasma pressure, by 

the same amount, in the parallel

direction. 

➢ Thus, the magnetic field gives 

rise to a magnetic pressure, acting 

perpendicular to field-lines, and a 

magnetic tension acting along field-

lines.
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➢the parallel direction (tension force) 

➢Alfven wave propagate in the parallel direction 

(*See Next Page)



Speed of Propagation
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Imagine a very long string under Tension T. The 

net transverse force on the segment z and z+dz, is

𝑑𝐹 = 𝑇 sin ɵ′ − 𝑇 sin ɵ

Provided that the distortion of the string is not too 

great, these angles are small, and we can replace 

the sine by the tangent:
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If the mass per unit length is 𝜇, Newton’s second law says:
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the perpendicular direction (pressure force) 

➢Magnetic Flux freezing:

Perpendicular B-compression corresponding to density 

compression, the magnetic flux B dS across an element of surface 

ds (whose normal is orientated along the magnetic field) and the 

mass 𝜌𝑚 dS of a unit length of column having dS as base are 

both conserved during the mass motion.
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➢Relevant pressure gradient is that of the total pressure

/ mB const = / mp const =

For motion perpendicular to the magnetic field, in addition to 

the  kinetic fluid pressure p, there is also the magnetic pressure.



Magnetosonic waves

Propagate in the perpendicular direction

➢Gradient now becomes

➢We have

𝛻(𝑝 +
𝐵2

2𝜇0
)= 𝑣𝑚𝑠

2
𝛻𝜌𝑚 =

𝛾𝑝

𝜌𝑚
𝛻𝜌𝑚 +

𝐵2

𝜇0𝜌𝑚
𝛻𝜌𝑚

𝑣𝑚𝑠
2
 = 𝐶𝑠

2 +𝑉𝑎
2



Linear perturbation theory

Because the MHD equations are nonlinear (advection term and 

pressure/stress tensor), the fluctuations must be small.

-> Arrive at a uniform set of linear equations, giving the dispersion 

relation for the eigenmodes of the plasma.

-> Then all variables can be expressed by one variable

Usually, in space plasma the background magnetic field is sufficiently strong, 

so that one can assume the fluctuation obeys:

In the uniform plasma with straight field lines, the field provides the 

only symmetry axis which may be chosen as z-axis of the coordinate 

system such that:   B0=B0ê.



Eq. of ideal MHD in an adiabatic case
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MHD wave equation
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Let us seek for plane wave solution in form:
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I. Propagation perpendicular to the B0 field
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1. Magnetic perturbation follows the induction equation as

2. Wave Electric field from the Ohm’s law: 

3. Linearity means : 1 0B B 1 / msV k v =

4. This wave resembles ordinary electromagnetic waves in that k, B1 and 

E1 are all perpendicular to each other

5. This wave is called a magnetosonic or a magneto-acoustic wave.

1 / /V k Compressional or a fast Alfven wave
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II. Propagation parallel to the B0 field
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Dispersion relation:

1 A⊥V v

Alfven wave
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1. No density perturbation

2. electric and magnetic perturbation 
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4. Velocity disturbance is perpendicular to the back ground magnetic 

field and wave vector. 
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Alfven Waves in the solar wind

For Alfven waves, B1 =
−B0

( Τ𝜔 𝑘)
𝑉1 →

𝑉1

𝐵1
= −

𝑉𝑎

𝐵0

The relation given by the above equations is very  important to identify 

Alfven waves in the solar wind. The amplitude of velocity and magnetic field 

is correlated and the difference between their phases is 180 degrees.

(Gosling et al. 2009, ApJ)



Geomagnetic Pulsations

First published account in Stewart[1961]

– Quasi-sinusoidal magnetic field 

oscillations

– Field changes on the order of 100nT

– Time scale of a few minutes

What we could now call a resonant MHD 

standing wave

– aka a ultra-low frequency (ULF) wave

– aka a field-line resonance (FLR)

First theoretical treatment in Dungey (1954) 

Experimental verification of Dungey’s

theory came from ground and satellite 

measurements in the 1960s and 1970s



Resonant MHD Standing Waves in the Magnetosphere 

• Make serval simplifying assumptions

– Cold plasma

– Uniform plasma 
– Uniform magnetic field

• Linearize
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Alfven Standing waves

（fundamental）
Alfven standing waves

（second harmonic）

Only Certain resonant frequencies can be established.

These frequencies are controlled by the length of field

lines between the ionospheres, the strength of the

magnetic field, and the plasma density.
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III. Oblique Propagation



( 𝑉1𝑦≠ 0)
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Phase-velocity polar diagram of MHD waves



Fast Mode ( Cold Plasma)

➢ In cold plasma, (which is obtained by letting the sound speed 

VS =0) magnetic pressure is much greater than kinetic 

pressure, and also the Alfven velocity is greater than sound 

speed. The dispersion relation could be simplified as :
2 2 2

Ak v =

➢ Velocity disturbance is perpendicular to the wave vector.

1 0 0 =V B 1 1V k⊥ =V k

➢ This is the dispersion relation for the compressional-Alfven 

wave, thus, the fast wave is the compressional-Alfven wave 

modifed by a non-zero plasma pressure.



➢ Field aligned current
0 0 =j B

➢ In Warm plasma, dispersion relation is complicated, and 

group velocity depends on directions and frequency.

➢ The group and phase velocity is equal and isotropic, and the 

fast mode propagate in all directions.
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➢ In cold-plasma limit, which is obtained by letting the sound 

speed VS =0. the slow wave ceases to exist (in fact, its phase 

velocity tends to zero)

➢ In the limit VA >>VS, which is appropriate to low-beta, the 

dispersion relation for the slow wave reduces to

➢ This is the dispersion relation of a sound wave propagating 

along magnetic field-lines. Thus, in low-beta plasmas the 

slow wave is a sound wave modified  by the presence of 

the magnetic field.

cosskv 



Dependence of phase velocity on propagation angle 



Magnetohydrodynamic waves

• Magnetosonic waves

compressible

- parallel slow and fast

- perpendicular fast

• Alfvén wave

incompressible

parallel and oblique
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