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MHD Instability



Instabilities in a plasma

Because of a multitude of free-energy sources in space plasmas, a 

very large number of instabilities can develop. 

If spatial scale involved is:

• comparable to macroscopic size (bulk scale of plasma,.....)              -> 

macroinstability (affects plasma globally)

• comparable to microscopic scale (gyroradius, inertial length,...)  -> microinstability

(affects plasma locally)

Theoretical treatment:

• macroinstability,   fluid plasma theory

• microinstability,    kinetic plasma theory



Concept of instability

Generation of instability is the general way of redistributing energy which 

was accumulated in a non-equilibrium state.

stable             linear unstable               metastable                non-linear unstable



Methods of Instability Analysis

A method used to study equilibrium problems imagines the system 

to undergo a small displacement as the result of the application of 

an arbitrary force. If the force increases the displacement and 

thereby deforms the system, the system is said to be unstable. If, 

however, the effects of the force are damped and the system returns 

to the initial configuration, the system is considered stable.  

Normal mode:  examine whether the perturbation grows or damps 

by studying the motion of the particles in the immediate 

neighborhood. 

Energy principle methods: by calculating the energy of the initial 

and final states.



Methods of Instability Analysis

Consider two point masses in a one-dimensional potential field V(x) 

as shown. A small perturbation applied to point A will cause the 

mass to oscillate about the equilibrium point while perturbation 

applied to at point B will accelerate the mass away from the 

equilibrium point. System A is stable and system B is unstable.   

Let the coordinate of the equilibrium position be given by 𝑥0 and 

the force F(x). The equation of motion of the mass m at position x, 

obtained by Taylor expansion about the point 𝑥0:    

𝑚
𝑑2𝑥

𝑑𝑡2
= 𝐹 𝑥 = 𝐹 𝑥0 + 𝐹′ 𝑥0 𝑥 − 𝑥0 +⋯

= 𝐹′ 𝑥0 𝑥 − 𝑥0 +⋯
Where 𝑥0 is the equilibrium position, F(𝑥0)=0



Methods of Instability Analysis

Let 𝜉 = 𝑥 − 𝑥0, and ignored higher-order terms,

𝑚
𝑑2𝜉

𝑑𝑡2
= 𝐹′(𝑥0)𝜉

The solution of this equation:

𝜉 = 𝜉0 exp{
𝐹′ 𝑥0
𝑚

Τ1 2

𝑡} = 𝜉0exp iω𝑡 ,

𝑤ℎ𝑒𝑟𝑒 𝜔2 = −
𝐹′ 𝑥0
𝑚

A:  𝐹′ 𝑥0 < 0 ,𝜔 real, the solution is oscillatory

B: 𝐹′ 𝑥0 > 0, the disturbance grows exponentially.



Interchange Instablity

Consider two vessels in which there are two kinds of fluids in  a 

gravitational field. Let the fluid on the top in one case (left) be 

lighter than one on the bottom, and let the reverse be true in 

other case (right). Both systems are initially in equilibrium. 

Introduce now a small perturbation in the form of waves, to the 

interface of two fluids.

Left: the waves will oscillate about the equilibrium and will 

eventually damp out. 

Right: the waves will grow, which will lead to the interchange of 

the positions of the upper and lower fluids.

The lower energy state is reached by lowering the potential energy.

Lighter

Lighter



Linear instability

The concept of linear instability arises from consideration of a linear wave 

function. Assume any field (density, field, etc.) denoted by A, the fluctuation of 

which is A, that can be Fourier decomposed as

In general the dispersion relation (DR) has complex solutions:  = r +i  . For 

real frequency the disturbances are oscillating waves.

For complex solutions the sign of  decides whether the amplitude A growth (
>0) or decays ( <0). 



Two-steream Instability (Buneman Instability)

As a simple example of a streaming instability, consider a uniform 

plasma the ions are stationary and the electrons have a velocity 𝑣0 

relative to the ions. Let the plasma be cold (𝑘𝑇𝑒 = 𝑘𝑇𝑖 = 0),  and 

let there be no magnetic field (𝐵0 = 0). We first separate the 

dependent variables into to two parts: an “equilibrium” part 

indicated by a subscript 0, and a “perturbation” part indicated by a 

subscript 1. 

The equations of motion for the ions and the electrons are, to first 

order:



Two-steream Instability (Buneman Instability)

We look for electrostatic waves   

Where x is the direction of  𝑣0

The velocities are in the x direction, and we may omit the subscript 

x.  The ion equation of continuity yields: 

Note that the other terms in 𝛻 ∙ 𝑛𝑣𝑖 vanish because 𝑣𝑜𝑖 = 0



Two-steream Instability (Buneman Instability)

The electron equation of continuity is: 
𝜕𝑛𝑒1

𝜕𝑡
+ 𝑛0𝛻 ∙ 𝑣𝑒1 + 𝑣0 ∙ 𝛻 𝑛𝑒1 = 0

Since the unstable waves are high-frequency plasma oscillations, 

we may not use the plasma approximation but use Poisson’s 

equation:  



Two-steream Instability (Buneman Instability)

The dispersion relation is found upon dividing by 𝑖𝑘𝜖0𝐸

Let us see if oscillations with real k are stable or unstable. If all the 

roots 𝜔𝑗 are real, each root would indicate a possible oscillation.  

If some of the roots are complex, they will occur in complex 

conjugate pairs.  Positive Im(ω) indicates an exponentially growing 

wave; negative Im(ω) indicates a damped wave. Since the roots 

occur in conjugate pairs, one of these will always be unstable 

unless all the roots rare real. 



The dispersion relation can be analyzed without actually solving 

the fourth-order equation. Let us define 

For any given value of y, we can plot F(x,y) as a function of x.  

This function will have singularities at x = 0 and x =y.  In the 

example of (a), there are four intersection's, so there are four real 

roots (stable). However if we choose a smaller value of y, there 

are only two real roots. The other two roots must be complex, 

and one of them must correspond to an unstable wave. Thus, for 

sufficiently small  𝑘𝑣0, the plasma is unstable. 



Growth rate

For 0th approximation, m/M     0, then:

𝑘𝑣0 − 𝜔~ 𝜔𝑝

If m/M cannot be ignored, the  above equation must be examined in 

its entirety.  We can assume 𝑘𝑣0 −𝜔 = 𝜔𝑝 − 𝛿𝜔 , (𝛿𝜔 ≪ 𝜔)then

1 −
𝜔𝑝
2

𝜔𝑝 − 𝛿𝜔
2 =

𝜔𝑝
2(
𝑚
𝑀)

(𝑘𝑣0 − 𝜔𝑝 + 𝛿𝜔)2

The low frequency case 𝜔𝑝𝑖 ≪ 𝜔 ≪ 𝜔𝑝 𝑒 has wavenumber 𝑘 ≈ 𝜔𝑝/𝑣0, 

this permits to write the dispersion relation as 

(𝛿𝜔)3~(−
𝑚

𝑀
)𝜔𝑝

3



Which has one real negative frequency stable solution of no interest 

and two conjugate complex solutions which can be found when 

putting 𝛿𝜔 = 𝜔𝑟 + 𝑖𝛾 and separating into real and imaginary parts

𝜔𝑟 𝜔𝑟
2 − 3𝛾2 = −𝑚𝜔𝑝

3  and 𝛾2 = 3 𝜔𝑟
2

Which yields the oscillating wave of frequency 𝜔𝑟 = 𝜔𝐵 and growth 

rate 𝛾 = 𝛾𝐵 with

𝜔𝐵 = 𝜔𝑝(
𝑚

16𝑀
)1/3   and   𝛾𝐵 = 31/2 𝜔𝐵 



Rayleigh-Taylor instability 

In a plasma, a R-T instablitiy can occur 

because the magntec field acts as a light 

fluid supporting a heavy fluid (the 

plamsa). To treat the simplest case, 

coonsider a plamsa boundary lying in the 

y-z plane. Let B0  be in the z-direction. 

We assume the plasma β is low so that 

we can let kTe = kTi = 0. This implies 

that there is no diamagnetic current (due 

to 𝛻𝑛 )

In the equibrium state, the ions obey 

the equation: 

x

y

If g is constant, 𝑣0 will be also, and (𝑣0 ∙ 𝛻)𝑣0 vanishes. Taking the cross 

product of the above equation with B0 , we  find  

v0



which is just the guiding center drift of ions acted on by the 

gravitational force. Here Ω𝑐 = 𝑞𝐵/𝑀 is the on Larmor frequency. 

We can obtain a similar equation for the electrons that drift in the 

opposite direction. However, in the limit m/M ~ 0, the electron 

contribution can be ignored. 

Introduce now a small disturbance so that the boundary becomes 

ripped.  Because the 𝒈 × 𝑩 drift is mass dependent, the ions will 

drift faster than the electrons, hence it can be easily deduced that 

the 𝑣0 of the ions over the rippled surface will cause the charges to 

build up as shown. This charge separation produces an electric 

field 𝐸1 and the ripples, 𝑬1 × 𝑩 is in the x-direction the minimum 

and in the –x direction at the peaks. The amplitude of the ripple 

will thus grow larger and the boundary becomes unstable. 



We will carry out the analysis using the normal mode method to 

investigate the R-H instability. 

z

x

g

a

0

B0

x x xx

x x x

x

wall

wall

The basic geometry is shown in the 

figure. We assume that the plasma is 

bounded perfectly conducting walls at 

z=0, a, that the gravitational acceleration, 

g, is directed downward, and that 

magnetic field, B0, is in the +y direction 

(i.e. into the paper)

Assume that the equilibrium mass density profile is given by 

exponential  𝜌𝑚0 = 𝜌0exp(−
𝑧

𝐻𝑠
), where 𝜌0 is the density at z = 0, and 

Hs is a constant that is called the scale height in the ionospheric 

literature.   If Hs>0, the equilibrium density decreases with the 

increasing height. If Hs < 0, the equilibrium density increases with 

increasing height. 



In the presence of gravity, the momentum equation must be 

modified to include the gravitational force，𝜌𝑚𝒈,  so that, 

𝜌𝑚
𝒅𝑼

𝒅𝒕
=

𝟏

𝝁𝟎
𝑩 ∙ 𝛁 𝑩 − 𝛁

𝐵2

2𝜇0
+ 𝑃 + 𝜌𝒎g

Linearizing this equation with respect to small perturbations 

around the zero-order equilibrium gives 

𝜌𝑚0
𝒅𝑼

𝒅𝒕
=

𝟏

𝝁𝟎
𝑩𝟎 ∙ 𝛁 𝑩 +

𝟏

𝝁𝟎
𝑩 ∙ 𝛁 𝑩𝟎 − 𝛁

𝑩0∙𝑩

𝜇0
+ 𝑃 + 𝜌𝒎g

Where, we have suppressed the subscript 1 on the first order 

terms. Next consider a plane wave perturbation on the form 

exp 𝑖𝑘𝑥 + 𝑖𝜔𝑡 , which assumes no spatial variation along y, and 

hence the equilibrium magnetic filed suffers no spatial modulation 

along y. The first two terms on the right above vanish. It is 

convenient to eliminate  the third term by taking curl, which gives: 



𝜵 × (𝜌𝑚0
𝒅𝑼

𝒅𝒕
) = 𝛁 × 𝜌𝒎g

The y component of the above equation is given by

𝜔 𝑖𝑘𝜌𝑚0
෪𝑈𝑧 −

𝜕

𝜕𝑧
(𝜌𝑚0

෪𝑈𝑥) = 𝑘𝑔෦𝜌𝑚 (1)

For simplicity, assume the perturbed velocity is incompressible.

∇ ∙ 𝑼 = 0

For assumed plane wave perturbation, 

𝑖𝑘 ෪𝑈𝑥 +
𝜕෪𝑈𝑧

𝜕𝑧
= 0    or ෪𝑈𝑥 =

𝑖

𝑘

𝜕෪𝑈𝑧

𝜕𝑧
                 (2)

Since ∇∙𝑼=0,  the linearized mass continuity equation simplifies to
𝜕𝜌𝑚

𝜕𝑡
+ 𝑼 ∙ ∇𝜌𝑚0 = 0



Which for the assumed plane wave perturbation yields

i𝜔෦𝜌𝑚 + ෪𝑈𝑧
𝜕𝜌𝑚0

𝜕𝑧
= 0  or ෦𝜌𝑚 =

𝑖෪𝑈𝑧

𝜔

𝜕𝜌𝑚0

𝜕𝑧
                      (3)

It is straightforward to eliminate ෪𝑈𝑥 and ෦𝜌𝑚 from equation (1) 

using (2) and (3), which gives 
1

𝜌𝑚0

𝜕

𝜕𝑧
(𝜌𝑚0

𝜕෪𝑈𝑧

𝜕𝑧
) = 𝑘2(1 −

𝑔

𝐻𝑠𝜔
2)෪𝑈𝑧

Where  ൗ1 𝐻𝑠 = −(
1

𝜌𝑚0
)
𝜕𝜌𝑚0

𝜕𝑧

The above equation is a second-order differential equation for ෪𝑈𝑧, 

to be solved using the boundary conditions ෪𝑈𝑧 = 0  at z=0  and a.

To solve the above equation, we make the substitution:

෪𝑈𝑧 𝑧 = 𝑓 𝑧 exp
𝑧

2𝐻𝑠
, which gives



𝑑2𝑓

𝑑𝑧2
+ 𝛼2𝑓 = 0

Where 𝛼2 = 𝑘2
𝑔

𝐻𝑠𝜔
2 − 1 −

1

4𝐻𝑠
2

Since f(0) = f(a) = 0, we obtain the eigenfunctions 

𝑓𝑛 𝑧 = 𝑓0 sin
𝑛𝜋𝑧

𝑎
,  n = 1, 2, 3, …, where 𝑓0 is a constant, and the 

eigenvalue relation: 

𝑛2𝜋2

𝑎2
= 𝑘2

𝑔

𝐻𝑠𝜔𝑛
2 − 1 −

1

4𝐻𝑠
2

The above equation can be solved for the frequencies of normal 

modes which are give by 



𝜔𝑛
2 =

𝑔

𝐻𝑠

4𝑘2𝑎2𝐻𝑠
2

𝑎2 + 4𝐻𝑠
2(𝑘2𝑎2 + 𝑛2𝜋2)

Note that 

1. If Hs > 0, the frequency 𝜔𝑛, of the nth mode is purely real and 

the system is stable. On the other hand, if Hs<0, the frequency 

is purely imaginary, and the system is unstable,  which means  

Τ𝜕𝜌𝑚0 𝜕𝑧 > 0,  having opposite sign of g. This is just the 

statement that the light fluid is supporting the heavy fluid.

2. The largest growth rate, Τ𝑔 𝐻𝑠, occurs in the limit 𝑘՜∞, 

and the smallest growth rate occurs in the limit 𝑘՜0
3. For fixed k, the growth rate decreases with increasing mode 

number n.  



RT instablity occurs in the Ionosphere 

A good example of the RT instability occurs in the ionosphere 

near the magnetic equator, where the magnetic field is nearly 

horizontal. Under certain conditions, “bubbles’ of low density 

plasma from near the base of the ionosphere rise upwards into the 

ionosphere, causing plume-like disturbances, that can be detected 

by ground-based radars.  

Basu and Kelley, 1979



 left：Simulation

 Right: SYISR observation

Yokoyama et al., 2014 JGR

Credit: Yue X.A.



Vacuum

Plasma Vacuum

Plasma

𝛻𝑛

unstable stable

Since g can be used to model the effects of magnetic field 

curvature, we see from this that stability depends on the sign of the 

curvature. Configurations with field lines bending in toward the

plasma tend to be stabilizing, and vice versa.



Kelvin-Helmholtz instability 

Linear perturbation analysis in both 

regions shows that incompressible 

waves confined to the interface can 

be excited

• Shear flow at magnetised plasma boundary may cause 

ripples on the surface that can grow.........

• The rigidity of the field provides the dominat restoring 

force.......

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Wavecloudsduval.jpg/220px-Wavecloudsduval.jpg

http://en.wikipedia.org/wiki/File:Wavecloudsduval.jpg


The in  quadratic dispersion 

relation yields an unstable 

solution given by:
corresponding to the appearance of a complex conjugate root if the 

streaming is large enough, i.e. if the subsequent inequality is fulfilled:

Excitation of 

geomagnetic 

pulsations!



KH instability at the magneotpause 

3D Global MHD Simulation



Sausage Instability 

Suppose that the equilibrium state of the 

pinched plasma column, is disturbed by a 

wave-like perturbation.

We shall consider that the plasma is

constricted in some locations and expanded 

at others, in such a way that its volume does 

not change. So, the pressure plasma is left 

unchanged.

In view of the 1/r radial dependence of

the azimuthal magnetic field, at the location 

where the radius has decreased, the magnetic 

pressure will be larger than the plasma 

pressure, and will force the surface radially 

inwards, thus enhancing the constriction. (m 

= 0 sausage instability)



Kink Instability 

The kink distortion consists of a 

perturbation in the form of a bend or kink

in the column.

If the column develops a kink, the 

increased pressure and tension on the

high B side increases the bending. This is

known as the m =1 kink instability.

Instabilities can be prevented by adding 

a longitudinal magnetic field Bz to “stiffen”

the plasma. The  ൗ𝐵2
2𝜇0 pressure resists the

m = 0 mode and the tension ൗ𝐵2
𝜇0

counters the bending.



Firehose Instability 

Whenever the flux tube is slightly

bent, the plasma exerts an outward 

centrifugal force (curvature radius,

R), that tends to enhance the initial

bending. The gradient force due to 

magnetic stresses and thermal 

pressure resist the centrifugal

force. In force equilibrium:

The resulting instability condition (anisotropic pressure 

instability) for breaking equilibrium is:



Mirror Instability 

This long-wavelength compressive slow-mode instability requires 

consideration of particle motion parallel and perpendicular to the 

field.

Occurs in the Earth‘s dayside magnetosheath, where the shocked 

solar is heated adiabatically in the perpendicular direction, while 

the field-aligned outflow cools the plasma in the parallel direction.



Mirror Instability 

The particles stream into the

mirror during instability, become

trapped there and oscillate

between mirror points. Density

and field out of phase, slow mode

wave!
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