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Abstract: The fractional calculus approach in the constitutive relationship model of 

viscoelastic fluid was introduced. The velocity and temperature fields of the vortex flow of a 

generalized second fluid with fractional derivative model were described by fractional partial 

differential equations. Exact analytical solutions of these differential equations were 

obtained by using the discrete Laplace transform of the sequential fractional derivatives and 

generalized Mittag-Leffler function. The influence of fractional coefficient on the decay of 

vortex velocity and diffusion of t~mperature was also analyzed. 
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Introduction 

Viscoelastic flows are prevalent in stiring, mixing and chemical reaction of dilute polymer 

solutions, which often go with heat transfer. It is of very important significance to study the 
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mechanism of viscoelastic fluid and heat flow in many industry fields, such as oil exploitation, 
l n [1] chemical and food industry and bio-eng'nee 'ng . Supposing linear constitutive relationship, 

Fetecau et al .  [2] studied the vortex velocity field and temperature field in second grade fluid. In 

their report, the constitutive relationship employed has the following form: 

v ( t )  = t z e ( t )  + E 3 - - - - 7 '  (1) 

where r is the stress, e is the strain, /~ is the coefficient of viscosity, E is the viscoelastic 

coefficient. 
Recently fractional calculus has encountered much success in the description of complex 

dynamics, such as relaxation, oscillation, diffusion, wave and viscoelastic behavior. Bagley [3] , 
Friedrich N], Huang Jun-qi [5] , He Guang-yu [6] , Xu Ming-yu E7'8] and Tan Wen-chang [9-12] 

et al.  separately used fractional calculus to handle various rheology problems, and made great 

achievements. Jiang Ti-qian et al .  used fractional calculus to analyze the experimental data of 

viscoelastic colloid, and got good result ~13' 14]. 

Generally the constitutive relationship of viscoelastic second order fluids has the form as 

follows: 

v ( t )  = t z e ( t )  + a l D f [ e ( t ) ] ,  (2) 

where a l is the viscoelastic parameter, /3 is the fractional coefficient and D f  is the Riemann- 

Liouvill fractional calculus operator and may be defined as E15] 

1 f t  d f ( r )  
D f [ f ( t ) ]  - r ( 1  - /3)-0 d t  ( t  - r ) ~ d r  (0 < /3 < 1),  (3) 

where P ( .  ) is Gamma function. While/3 = l ,  Eq. (2) may be simplified as Eq. (1 ) ,  which is 

the classical linear model of second grade fluid; and while a l = 0 or fl = 0, the constitutive 

relationship describes complete viscous Newtonian fluid. 

In this paper we will study the vortex velocity field and temperature field in a generalized 

second order fluid by using the constitutive relationship given by Eq. (2 ) .  Exact analytic solutions 

of these differential equations are obtained by using Hankel integral transform, inverse Laplace 

transform skill and generalized Mittag-Leffler function. Moreover, we successfully analyze how 

the fractional coefficent /3 influences the velocity field and temperature field. Many classical 

results can be special examples of our results, such as the decay of vortex velocity and 

propagation of a heat wave in a second grade fluid studied by Fetecau [2] , and vortex velocity field 

in classical viscous Newtonian fluid. This provides a new analytical tool for further study of 

viscoelastic fluid and heat flow. 

1 M a t h e m a t i c a l  M o d e l  

We consider a circular motion of generalized second grade fluid whose velocity field, in a 

system of cylindrical coordinates ( r ,  0, J ) ,  is of the form Vr = 0, VO = co ( r ,  t ) ,  v, = O. Here we 

assume that the initial distribution of the velocity is that of a potential vortex of circulation P0 and 

the flow is symmetrical to axis. 

On the basis of above analysis the constitutive relationship of the generalized second grade 

fluid for this flow is 

[ ] [ 8 ( w ( r , t ) ) ]  (4) 3 w ( r , t )  + a i D  f r ~r r V,a = Ilr -~r r 
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Momentum equation is 

8oo(r,t)  1 3 
P 3 t  - r2 3 r ( r a r , O ) ,  (5) 

where r (  r ,  0) is the component of stress, p,/~ separately denote density and coefficient of 

viscosity of the fluid. Substituting Eq. (4) into Eq. ( 5 ) ,  we obtain 

8o)(r , t )  _ (v + aDt ~) + rOr - oo(r,t)  (6)  
cgt 

where v = ~z/p, a = al /p .  The initial condition is 

co(r ,O) = /-'o/(2rrr) (7) 

and the natural conditions are 

~o(r, t ) ,  8~o(r,t) ---~0 as r--~ ~ , t  > 0. (8) Or 
Further, we consider that there exists temperature field during vortex flow in a generalized 

second grade fluid. Its initial distribution and natural conditions are similarly assumed to be of the 

same forms with Ref. [ 2 ] ,  i . e . ,  

O(r ,O)  = Oo/(2nr), (9) 

O0(r , t )  
---~0 as r--~ oo,t > 0. (10) O(r , t ) ,  Or 

The energy equation, when the Fourier' s law of heat conduction is considered, may be 

written in the form [2] 

3 0 ( r , t )  ( 8~r2 r~r ) v [Oco(r,t) co(r, t)]2 h ( r , t )  
3t - [31 + O(r , t )  +--tc -3r - - - r  + C ' (11) 

where h ( r ,  t )  is the radiant heating which is neglected in this paper, c is the specific heat and 

fll = k / ( p c ) ,  where k is the conductivity, which is assumed to be constant. Eq. ( 11 ) is 

formally identical to the energy equation for a Newtonian fluid and classical second grade fluid. 

However, the temperature field given by Eq. ( 1 1 ) is different from the Newtonian case and the 

classical second grade case because the velocity distribution co ( r ,  t ) is different. 

2 V e l o c i t y  F i e l d  

Let us introduce dimensionless variables co* = w~//F02, r* = rFo//v, t* = tP02//,. Using 

Eq. (3)  and the first mean value t~eorem of the integral, it can be easily proved [7'9'16] that the 

operator D t ~ has a fractional time dimensions [ V/Po ~] -~. Thus, the dimensionless equation is 

obtained as follows (for brevity the dimensionless mark " * " are omitted here) : 

3 w ( r , t )  _ (1 + r]Dt ~) Or 2 rOr 3t - -  + - w ( r , t )  (12) 

w(r t ) ,  Ow(r,t)__~O as r--~ w , t  > 0,  (13) 
' Or 

oJ(r,O) = 1/(2nr) ,  (14) 

where r/ = a ~5" Considering the fractional order Eq. (12) has the integral order initial condition 

(14) ,  we define the fractional calculus operator ~ to be of the form as Sequential Fractional 

Derivatives E153 . In order to get the exact solution to those equations, we introduce the Hankel 
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transform as follows[~7] : 

Hankel transform 

Inverse Hankel transform 

~ oo 
OOh(~, t ) = r J l ( ~ r ) w ( r , t ) d r  ; (15) 

0 

m ( r , t )  = ~:J1 (~r)  tOh ( ~:, t )  d~:, (16) o 
where ]l ( & )  is the first kind Bessel function of the first order. 

Applying Hankel transform principle to Eqs. (12) and (14) ,  we can obtain 

dmh( ~, t)  
+ (1 + rIDf)[$2COh($,t)] = O, (17) 

dt 

(.Oh( ~ , 0 )  = 1/(2~6:) .  (18) 

f" 
Letting ~ ( ~ , s )  = L{Wh(~ ,  t ) }  = e-stWh(~, t )d t  be the image function of wh(~,  t ) ,  

0 
where s is a transform parameter and using Laplacd transform principle of Sequential Fractional 

Derivatives to Eq. (17) [151 , we can obtain 

~ ( ~ , s )  = 2--~(1 + ~2s~-1) 1 
s + 7] ~2s~ + ~2. (19) 

In order to avoid the burdensome calculations of residues and contour integrals, we apply the 

discrete inverse Laplace transform method to get ~--~k( ~, s ) .  First, we rewrite Eq. (19) as a series 

form 

1 1 2 ( -  1)t'~:2(/~+1) s-~k-~ ~ k ( ~ , $ )  = ~--~'-~(1 + T]~2$ fl-1) ~'~ k=0 ($1-fl + 7]~2)k+1 ---- 

1 Z.a~-~(- 1)k~:2(k+l) s-Bk-/~ 
2n~ 3 k=o ($1-fl + /] ~:2)k+1 + 

2 ( -  1)k~ 2(k+1) S -3k-1 
2nr ,.o (s1-# + 7 ~:2)k+1' (20) 

Applying the inverse Laplace transform term by term with Eq. (20), we obtain 

COh($,t) 1 ~ 0  ( -  1)k$2kt~[E(k) - 2 ~  = -k ! 1 - f l , l + f l k (  -- 7] ~2t l - f l )  + 

1-# (k) $2t1-#)] (21) 7It El_fl.2+fl(k_l) ( - 7] 
zk  

in which E~,#(z) = P ( a k  + fl) denotes generalized Mittag-Leffler function E153 . To obtain 
k=0 

Eq. (21) ,  we used the following property of the generalized Mittag-Leffier function's  inverse 

Laplace transform: 

{ n l s  ~-~ } 
L -1 (~c~-~-+l = t,*An+'u-1 b-'(n)ta2~,/~,r+_ ct a) ( R e ( s )  >1 c [l/a) . (22) 

Applying inverse Hankel transform to Eq. (21) ,  we obtain the exact solution to the velocity 

field: 

1 j'| 2 ( -  1)~2ktk[ E(~) $2t1-~) + = J l ( r$ )  ~!  1-f l , l+f lk  ( -- 77 w ( r , t )  2-~ 0 ~=o �9 

2 1-fl (k) ~21~l-fl)] d~ .  ( 23 )  ~ t EI_~,2+~(~-x)(- 

Especially, when ~ = 0, Eq. (19) can be simplified as 
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-~--kk ( $, S) = 1 
2n~(S + $2)" (24) 

Separately applying inverse Laplace transform and inverse Hankel transform to s and ~ in 

Eq. (24) ,  we obtain 

1 exp( r2 
w ( r , t )  : 2---~r[1 - - ~-~)] (25) 

which is the Reiner-Rivlin dimensionless solution of the classical viscous Newtonian fluid 

problem [2] . 

If we set/3 = 1, Eq. (19) can be simplified as 

-~-kk(~,s) 1 1 + r/~ 2 
- 2rc~ s + r 1 g2sP + ~2" (26) 

Separately applying inverse Laplace transform and inverse Hankel transform to s and ~ in 

Eq. (26) ,  we obtain 

= Jl(r~e)exp - d~ o~(r , t )  ~ 0 1 + r/~ 2t (27) 

which is the dimensionless velocity solution of a second grade fluid obtained by Fetecau [2] . 

3 T e m p e r a t u r e  F i e l d  

Let us introduce dimensionless variables: 0 ~ Ov ~ wv ~ r-F'o ~ tU 2 
- 0 o F 0 ' ' ~  - F o  2 ,  r = - - ' v  t - v ' 

and then Eqs. (9)  ~ (11 ) can be changed into dimensionless equations as follows (for brevity the 

dimensionless mark " ~ " are omitted here) : 

30(r,t)ot - f12( 02 Or -----~ + ~rO ) O ( r , t )  + r]lt[Ow(r't)-Or - c~ (28) 

O ( r , t )  3 0 ( r , t )  ---~0 as r--~ ~ , t  > 0, (29) 
' Or 

O(r ,O)  = 1 / (27r r ) ,  (30) 

rg 
where [?z = v ' rh - cvOo" Letting 

[ O w ( r , t )  w(r,t______~)] 2 
f ( r , t )  = r]l Or - r (31) 

and Eq. (28) can be changed into 

Ot - /?z Or z + O ( r , t )  + f ( r , t ) .  (32) 

In order to get the exact solution to those equations, we make the Hankel transform to r in 

Eqs. (30)  and ( 3 2 ) .  According to the format of Eq. ( 3 2 ) ,  we use the Hankel transform as 

follows : 

Hankel transform f" 
0h (~ ,  t )  = r J o ( & ) O ( r , t ) d r ;  (33)  

0 

Inverse Hankel transform 

f 
~ 

O ( r , t )  = ~Jo(&)Oh(~e, t )d~ e, (34) 
0 
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where J0(&) is the first kind Bassel function of the zero order. 

Applying Hankel transform to Eq. (32) and making use of natural conditions Eq. (29),  we 

obtain 
dOh(~e, t) 

+ / 3 2 ~ : 2 0 h ( ~ , t )  = f h ( ~ , t ) ,  (35) 
dt 

wherefh( ~, t) is the Hankel transform image function o f f ( r ,  t ) .  Substituting Eq. (23) into 

Eq. (31 ),  we obtain 

fh(~,t)  7]1 f |  x 
= 4rt2Jo 

{fo xJz(xr)~.=o (-kl)kx2ktk[] E(k)'-p'l+~k(- rlxZtl-~) + 

173f2 1-fl (k) xZtl-#)]dx}Zdr. (36) t E l _ 3 , 2 + 3 ( k _ l )  ( - 

To obtain Eq. (36),  we used the following property of Bessel function E17] �9 

xrJ'l(xr) = J~'- xrJ2(xr). 
Applying Hankel transform to the initial condition (30),  we can obtain 

0h(~,0) = 1 / ( 2 ~ ) .  (37) 

Combining Eq. (35) with Eq. (37),  we can easily get 

0 h ( ~ , t  ) = e - 3 , e t  ~ + f s (~ , r )e~2e~dr  . ( 3 8 )  
0 

Then, making inverse Hankel transform to the equation above, we obtain 
2 

O(r,t) I f  e_#2etj0(~r)d~ + 
= 27rJo 

e J o ( & ) "  [ fh(e,  r)e-~2e (t-~')dr] de. (39) 
0 0 ~ 

Substituting Eq. (36) into Eq. (39),  we can obtain the temperature field as follows : 
1 t'| 

O(r,t) = 2--~J0 e -#~ t J~  + 

711 f| ~ejo (r~e) rJo(&) g2( r, r )drdrd~,  (4O) 
4~2Jo 0 

where 

g ( r , ~ )  = xJz(rx) ( -  1)kxZ%k[E(k) ( x2t 1-~) + 
0 k=0 k ! 1-f l , l+f lk -- /] 

2 1-fl (k) f i x  t E I _ / L 2 + B ( k _ I ) ( -  r]x2tl-{~)]dx. 

4 D i s c u s s i o n  a n d  C o n c l u s i o n s  

(41) 

We obtained the analytical solutions of the vortex velocity and temperature fields in a 

generalized second grade fluid above through Eqs. (23) and (40) .  Using the Matlab software, 

we simulate the influence of the fractional coefficient /3 on the velocity and temperature 

distribution. Figs. 1 and 2 show that the vortex velocity spacial distributions for the different 

values of time and fractional coefficient. It can be seen that the velocity increases with r and gets 

to the maximum value at some position because there exists a potential vortex of circulation/-'0, 

and then it begins to decay until to zero since the viscidity of the fluid makes the influence of 
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vortex on velocity become more and more weak. In general the variety trend of the velocity 

curves are similar with that in the classical second grade fluid described in Ref. [ 2 ] .  Fig. 1 shows 

the velocity distribution at several selected ft. We can see that when fl becomes larger, the curve 

gets acuter, that is, the maximum value of the velocity becomes larger, the position r 

corresponding to the maximum velocity becomes smaller, and subsequently the vortex velocity 

decays more quickly. It can be concluded that the larger the fl is, the more viscoelastic the fluid 

is, and the more similar to the classical second grade fluid. Especially, when fl = 1, it 

completely changes into the classical second grade fluid. On the other hand, the smaller the fl is, 

the more viscous the fluid is, and if fl = O, the fluid can be simplify as the viscous Newtonian 

fluid. Fig. 2 shows the velocity distribution at several selected t. It can be found that the vortex 

velocity at the same location becomes smaller with the time increases because of the viscosity of 

the fluid. 

Figures 3 and 4 show the distributions of the temperature field 0 ( r ,  t )  at several selected 

parameters. Fig. 3 is the temperature distribution at several selected /3. It can be found that the 
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larger fl is ,  the more quickly the temperature decays with r ,  and the more viscoelastic the fluid 

is. On the other hand,  the smaller the fl is,  the more slowly the temperature decays,  and the 

more viscous the fluid is. Fig. 4 shows the temperature distribution at several selected t ime,  from 

which we can see the temperature field decays more and more slowly with t ime,  that is because of  

the viscosity of  the fluid. 

We can also find from the four figures that when t and r become large enough,  no matter the 

velocity field or the temperature field will decay until reaching zero,  furthermore,  the larger the fl 

is,  the more quickly the fields decay.  So it means that the  viscoelastic property of  the fluid goes 

against the diffusions of  the velocity,  the temperature,  the vortex and the heat wave decay in time 

and space. 

In this paper ,  the problems on 

second grade fluid were expanded to 

and the exact solutions of  the decay 

the decay of vortices in the viscous Newtonian fluid or the 

the generalized second grade fluid with fractional derivatives 

of  the vortex velocity and the diffusion of  the temperature 

were also successfully obtained. The model and the analytical method employed in this paper have 

been shown to be useful for the theory analyses of  viscoelasitic fluid. 
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