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Discontinuities     

&   shock waves





• Shocks can form when an obstacle moves with 

respect to the unshocked gas.

• Shocks can form when a gas encounters an 

obstacle. 



Wave Steepening 

The formation of discontinuities can usually be traced to a non-

linear effect called wave steepening. 

Consider the propagation of a sound wave in an ordinary gas. 

𝐶𝑠
2 =

𝛾𝑝

𝜌
 

𝑝

𝜌𝛾
= const 𝐶𝑠 ∝ 𝑝𝛼 Where 𝛼 = Τ(𝛾 − 1) 2𝛾

If a pressure pulse is introduce into the gas, the trailing edge of 

the pulse, which have a higher pressure, tends to catch up with 

the leading edge.  
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Jump Conditions 

The thickness of a shock is ultimately controlled by some 

microscopic length scale. In an ordinary gas, the relevant length 

scale is the mean free path.  

In a collisionless plasma, which has infinite mean-free path, 

other length scales, such as the ion cyclotron radius, play a 

crucial role in determining the thickness. 

To investigate the types of discontinuities that can exist in an 

ideal MHD fluid, we start by assuming that a planar 

discontinuity of zero thickness separates two otherwise uniform 

fluids. 

Conservation of mass, momentum, and energy, and the boundary 

conditions for the electric and magnetic fields are then used to 

put constraints and fields across the discontinuity. Theses 

constraints are called the jump conditions. 



The Shock-conservation Relations 

Let us consider the simple case of a 1-D, steady shock

Shock

Bu

Uu

Upstream Downstream

Bd

Ud

n

t

We shall work in a frame where the shock is stationary.  The n-

axis will be aligned with the shock normal. We shall also assume 

a uniform upstream magnetic field. We can think of the shock as 

a discontinuity, but in reality it will have some thickness, given 

by the kinetic processes at the shock. 



MHD (with ideal Ohm‘s law and no space charges) in 

conservation form reads:



Jump Conditions 

The jump across the shock in any quantity X can be expressed 

using the following notation:  [X] = Xu - Xd

The MHD description gives us a set of conservation equations 

for the mass, momentum, energy.  For any quantity, a 

conservation equations has the form:   
𝜕𝑄

𝜕𝑡
+ 𝛻 ∙ 𝑭 = 0, where Q 

and F are the density and flux, respectively, of any conserved 

quantity. 

If the shock is steady and 1-D (there are variations only along 

the n-axis), this implies: 
𝜕

𝜕𝑛
𝐹𝑛 = 0

i.e.  𝑭𝑢 − 𝑭𝑑 ∙ 𝒏 = 𝟎
or 𝐹n = 𝟎



Jump Conditions 

Conservation of mass: 
𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ 𝜌𝒖 = 0 𝜌𝑢𝑛 = 0

Conservation of momentum: 

𝜕

𝜕𝑡
𝜌𝒖 + 𝛁 ∙ 𝜌𝒖𝒖 + 𝑝 +

𝐵2

2𝜇0
𝑰 −

𝑩𝑩

𝜇0
= 0

𝜌𝒖(𝒖 ∙ 𝒏) + 𝑝 +
𝐵2

2𝜇0
𝒏 −

𝑩(𝑩∙𝒏)

𝜇0
= 0

n – direction: 𝜌𝑢𝑛
2 + 𝑝 +

𝐵2

2𝜇0
= 0 ([B2

n] = 0)

t – direction:  𝜌𝒖𝑡𝑢𝑛 −
𝑩𝑡𝐵𝑛

𝜇0
= 0

Isotropic pressure



Jump Conditions 

The jump conditions form the energy is (as exercise): 

[𝜌𝑢𝑛
1

2
𝑢2 +

𝛾

𝛾−1

𝑝

𝜌
+ 𝑢𝑛

𝐵2

𝜇0
− 𝒖 ∙ 𝑩

𝐵𝑛

𝜇0
] = 0

Flux of kinetic energy 

(flow energy and internal energy)

Electromagnetic energy flux (𝐸 × 𝐵/𝜇0)

The above equations are the jump conditions for the gas, but there  

are also purely electromagnetic boundary conditions. Maxwell’s 

equations require that the tangential component of the electric field 

and the normal component of the magnetic field must be continuous 

across the discontinuity:

𝑬𝑡 = 0
𝐵𝑛 = 0

Using 𝑬 = −𝑼 × 𝑩 𝑢𝑛𝑩𝑡 − 𝐵𝑛𝒖𝑡 = 0

𝒏 × 𝑬 = 0

See next page



𝒏 × 𝑬 = 0 𝑬 = −𝑼 × 𝑩

𝒏 × 𝑼𝟐 × 𝑩𝟐 = 𝒏 × 𝑼𝟏 × 𝑩𝟏

𝒂 × 𝒃 × 𝒄 = 𝒂 ∙ 𝒄 𝒃 − 𝒄(𝒂 ∙ 𝒃)

𝐵2𝑛 𝑼𝟐 − 𝑈2𝑛𝑩𝟐 = 𝐵1𝑛 𝑼𝟏 − 𝑈1𝑛𝑩𝟏

𝑈𝑛𝑩 − 𝐵𝑛𝑼 = 𝟎

n – direction:  

(1)

𝑈𝑛𝐵𝑛𝒏 − 𝐵𝑛𝑈𝑛𝒏 = 𝟎 (2)

(1)-(2): 𝑈𝑛𝑩𝑡 − 𝐵𝑛𝑼𝑡 = 0



Rankine - Hugoniot Relations 

The conservation relations are referred to as the Rankine-

Hugoniot relations. 

The solutions of these equations describe a number of different 

types of MHD discontinuities, including shocks. For a 

discontinuity to be a shock, there must be a flow of plasma 

through the shock surface (𝑢𝑛 ≠ 0), and there must be some 

dissipation and compression across the shock. 

The conservation relations are a set of six equations. If we wish 

to find downstream state in terms of the upstream state, then 

there are six unknowns: 𝜌, 𝑢𝑛, 𝑢𝑡 , 𝑝, 𝐵𝑛,𝐵𝑡 . This means that the 

downstream state is specified uniquely by the conservation 

equations. However, we have only to introduce either an 

anisotropic pressure or another fluid, and then there will be more 

unknowns than equations. 



Discontinuities and shocks

Classification of MHD discontinuities

Un = 0 Un ≠ 0

[ρ] = 0 Trivial Rotational

discontinuity 

[ρ] ≠ 0 Contact discontinuity

（𝐵n ≠ 0）

Tangential discontinuity

(𝐵𝑛 = 0)

shock



Contact and tangential discontinuity

CD and TD are characterized by a zero normal 

mass flow, and thus n= 0. 

Bn  0   ->   Contact D

F = nmn = 0



Contact discontinuity (CD)

Index 1 upstream and 2 downstream;

Bt does not change across the surface 

of the CD, but 1  2 and T1  T2 .

Since in a CT the thermal pressure remains constant, any change in 

density must be compensated by a change in temperature. 

However, a temperature jump is quickly ironed out by electron 

heat conduction  ->  CD do nor persist long. 



Tangential discontinuity

CD and TD are characterized by a zero normal 

mass flow, and thus n= 0. 

Bn = 0   ->   Tangential D

F = nmn

Total pressure is 

constant. 



Schematic parameter changes across a TD

1 2



Illistration of CD and TD

TD

CD

B1
B2

V1

V2

V1 V2

B1

B2

Velocity, pressure, magnetic field 

continuity, interface between two fluids, 

no slipping 

velocity, density, 

magnetic field 

discontinuity, interface 

between two slipping 

fluids



Rotational discontinuity (RD)

RDs are characterized by a finite normal mass flow, but a 

continuous n.    F = nmn.

Constant normal n leads naturally 

to a constant vAn. Thus the so-

called Walen relation holds:

See next page



RD  constant 𝑣𝑛

𝜌𝑣𝑛 𝒗𝒕 =
𝐵𝑛
𝜇0

𝑩𝑡

𝜌𝑣𝑛
[𝑣𝑛𝑩𝑡]

𝐵𝑛
=
𝐵𝑛
𝜇0

𝑩𝑡

𝐵𝑛 𝒗𝒕 = [𝑣𝑛𝑩𝑡]

𝜌𝑣𝑛
2 −

𝐵𝑛
2

𝜇0
𝑩𝑡 = 0 𝜌𝑣𝑛

2 −
𝐵𝑛
2

𝜇0
= 0 𝑣𝑛 =

𝐵𝑛
𝜇0𝜌

𝐵𝑛 𝒗𝒕 = [
𝐵𝑛

𝜇0𝜌
𝑩𝑡]

𝐵𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝒗𝒕 −
𝑩𝑡

𝜇0𝜌
=0



• From the energy conservation equation, the jump condition about the energy is

• Based on 𝜌 = 0, 𝑣𝑛 = 0, 𝑣𝑛 =
𝐵𝑛

𝜇0𝜌
, [𝐵𝑛

2] = 0,the above equation can be 

rewritten as

𝜌𝑣𝑛
𝑝

𝜌

𝛾

𝛾−1
+

𝐵𝑡
2

2𝜇0𝜌
+

1

2
(𝒗𝒕 −

𝑩𝑡

𝜇0𝜌
)2 =0

Considering                        , the above can be simplified as 

or 
𝑝

𝛾−1
+ 𝑝 +

𝐵𝑡
2

2𝜇0
= 0,

• Since 𝜌𝑣𝑛
2 + 𝑝 +

𝐵2

2𝜇0
= 0 therefor 𝑝 +

𝐵𝑡
2

2𝜇0
= 0

• thus 𝑝 = 0, further that 𝐵𝑡
2 = 0 and 𝐵2 = 0

𝜌𝑣𝑛
1

2
𝑣2 +

𝛾

𝛾 − 1

𝑝

𝜌
+ 𝑣𝑛

𝐵2

𝜇0
− 𝒗 ∙ 𝑩

𝐵𝑛
𝜇0

= 0

𝛾

𝛾 − 1
𝑝 +

𝐵𝑡
2

2𝜇0
= 0

𝒗𝒕 −
𝑩𝑡

𝜇0𝜌
=0





Schematic parameter changes across a RD

At a RD the jump in tangential flow velocity is exactly equal to the jump in 

tangential Alfvén velocity. RD‘s occur frequently in the fast solar wind.

The RD jump conditions imply the Walén relation: 8.42



The Coplanarity Theorem

We can prove the thorem by noticing that the jump condition for 

parallel momentum and the condition on the transverse  electric 

field field imply [Bt] and [vnBt] are parallel to [vt] and thus 

parallel to each other.

The upstream and downstream magnetic field directions and the 

shock normal all lie in the same plane. This is called the 

coplanarity theorem and can be exressed in vector  notation as:

𝒏 ∙ 𝑩1 × 𝑩2 = 0



The Coplanarity Theorem

In terms of upstream and downsteam valuses, this means:

Thus, Bt1 and Bt2 are parellel.  The plane containing one of these 

vectors and the shock normal n contians both the upstream and 

downstream fields. 

This means that the shock normal direciton can be determined in 

terms of observed fields on either side of the shok as

𝒏 = 𝑩1 − 𝑩2 × (𝑩1 × 𝑩2)/| 𝑩1 − 𝑩2 × (𝑩1 × 𝑩2)|

t

n

𝑩1 × 𝑩2

𝑩1 − 𝑩2



The Exactly Parallel Shock

The parallel shock has the upstream magntic field parallel to the 

shock normal: that is, 𝑩1 = 𝐵𝑛𝒏 . We shall use the conservation 

relations in the frame where the upstream flow is also parallet to 

the shock normal, so that, 𝑣1 = 𝑣𝑛𝒏.  𝐵1𝑡 = 0,  then 𝐵2𝑡 = 0

Provided that 𝐵𝑛 ≠ 0, the elimnation of 𝐯𝑡 from jump conditions 

yields

[(1 −
𝐵𝑛

2

𝜇0𝜌𝑣𝑛
2)𝑣𝑛𝑩𝑡)]=0

The total magnetic field is left unchanged by the shock. There is 

a compression in the plamsa, but not in the field. From the MHD 

perspective, this means that the shock is like an ordianry fluid 

shock, and the magntic field does not play a role. 



The Exactly Perpendicular Shock

As the exactly perpendicular shock, the upsteram field is perpendicualr to 

the shock normal. In the case, 𝐵𝑛 = 0, 𝐵1 = 𝑩1𝑡 Again, we examine the 

case where the upstream flow is  parallet to the shock normal, so that, 

𝒗1 = 𝑣1𝑛𝒏.  

To ensure shocklike solutions, there will be a nonzero mass flux through 

the shock:  𝜌1𝑣1𝑛 = 𝜌2𝑣2𝑛 ≠ 0. We define  a denstiy compression ratio 

𝑟 =
𝜌2

𝜌1

From 𝜌𝑣𝑛𝒗𝑡 −
𝐵𝑛𝑩𝑡

𝜇0
= 0 𝑠𝑖𝑛𝑐𝑒 𝒗1𝑡 = 0 → 𝒗2𝑡 = 0

𝑣𝑛𝑩𝑡 − 𝐵𝑛𝒗𝑡 = 0 𝐵𝑛 = 0 𝑣1𝑛𝑩1𝑡 = 𝑣2𝑛𝑩2𝑡

This tell us that the upstream and downstream fields are parallel. Because there is 

no normal magnetic field or transverse flow velocity. From now on, we shall simply 

use B, v.  Then 𝐵2 = 𝑟𝐵1, the field compresses as much as the flow. 



The Exactly Perpendicular Shock

In the perpendicular case, 𝜌𝑣𝑛
2 + 𝑝 +

𝐵2

2𝜇0
= 0

reduce to: 𝜌1𝑣1
2 + 𝑝1 +

𝐵
1
2

2𝜇0
= 𝜌2𝑣2

2 + 𝑝2 +
𝐵
2
2

2𝜇0

Which can be rewritten as: 𝜌1𝑣1
2 1 −

1

𝑟
+ (𝑝1−𝑝2) +

𝐵
1
2

2𝜇0
(1 − 𝑟2)=0  

From 

[𝜌𝑣𝑛
1

2
𝑣2 +

𝛾

𝛾−1

𝑝

𝜌
+ 𝑣𝑛

𝐵2

𝜇0
− 𝒖 ∙ 𝑩

𝐵𝑛

𝜇0
] = 0

1

2
𝜌1𝑣1

2 1 −
1

𝑟2
+

𝛾

𝛾 − 1
𝑝1 −

𝑝2
𝑟

+
𝐵1

2

𝜇0
1 − 𝑟 = 0



The Exactly Perpendicular Shock

The above equations can be used to eleminate 𝑝2,  and we are left with an 

equation for r, the compression ratio, in terms of the upstream paramters:

𝑟 − 1 𝑟2
2 − 𝛾

𝑀𝐴
2
+ r

𝛾

𝑀𝐴
2
+

2

𝑀𝐶𝑆
2
+ 𝛾 − 1 − 𝛾 + 1 = 𝟎

We have introduced the Alfvenic Mach number MA, which is the 

ratio of the upstream flow speed to the upstream Alfven speed ; 

The sonic Mach number Mcs, is the ratio of the upstream flow to 

the upstream sound speed:

𝑀𝐴 =
𝑣1(𝜇0𝜌1)

1
2

𝐵1
; 𝑀𝑐𝑠 = 𝑣1 (

𝜌1

𝛾𝑝1
)
1

2; 

r = 1 does not correspond to a compressive shock.  For 𝑀𝐴 ≫1 

and 𝑀𝐶𝑆 ≫1:  𝑟(𝛾 − 1) - 𝛾 + 1 = 0 → 𝑟 = ൗ(𝛾+1)
(𝛾−1) . In 

particular, for 𝛾 =
5

3
,  r = 4; the maximum jump



Mach Numbers

A shock may develop when the fuild velocity exceeds the 

magntosonic speed. 

𝐶𝑚𝑠
2 = 𝐶𝑠

2 + 𝑉𝐴
2

One defines a magnertospic Mach number:

𝑀𝑚𝑠 =
𝑣

𝐶𝑚𝑠

The condiont for the evoluiton of a shock wave in a plasma then 

becomes that 

𝑀𝑚𝑠 > 1

Whenver this conditon is statified and the plamsa flow is 

distorted due to the presence of a non-moving object, a shock 

front will deveop. 



Oblique shocks: Fast and Slow 

For a fast shock, the magnetic normal component is constant, so 

that the increase is all in the transverse component. Therefore, at 

a fast shock, the donwstream field turns away from the shock 

normal. Conversely, at a slow shock, the downstream field bends 

toward the shock normal.   

Upstream Shock Downstream
Fast mode

Slow mode

The slow and fast shocks corresponds to the transverse Alfven 

wave, and the intermediate shock corresponds to the slow and fast 

MHD waves, in the weak shock limit (𝑟 = Τ𝜌1 𝜌2~1)



Schematic parameter changes across a fast shock

In a fast shock the magnetic field increases. 

Fast shocks may evolve from fast mode waves.

21



Schematic parameter changes across a slow shock

In a slow shock the magnetic field decreases. 

Slow shocks may evolve from slow mode waves.

21



Four possible geometries of shock normals



Types of Shocks in Ideal MHD

Shock Waves Flow crosses surface of 

discontinuity accompanied by 

compression.

Parallel Shock 

(   along shock 

normal)

B unchanged by shock.

(Transverse momentum and 

electric field continuity result in 

[Bt]=0 ). Hydrodynamic-like.

Perpendicular 

Shock

P  and B increase at shock.

There is no slow perp. shock.

Oblique Shocks  

Fast Shock P, and B increase, B bends away 

from normal

Slow Shock P increases, B decreases, B bends 

toward normal.

Intermediate                      

Shock

B rotates 1800 in shock plane. 

[p]=0 non-compressive, 

propagates at uA, density jump in 

anisotropic case.

0nv

0=tB

0=nB

0,0  nt BB

B






The most famous and mostly researched shock is the bow shock standing in 

front of the Earth as result of the interaction of the magnetosphere with the 

supersonic solar wind, with a high Mach number, MF  8. 

Solar wind density and field jump by about a factor of 4 into the 

magnetosheath.



Schematic of the Earth‘s bow shock geometry



Structure of the bow shock

– Since both the density and B increase this is a fast mode shock.
– The field has a sharp jump called the ramp preceded by a gradual rise called the foot. 
– The field right behind the shock is higher than its eventual downstream value. This is called 

the overshoot. 



• Ions can move back upstream 
from the bow shock in the 
quasi-parallel region of the 
bow shock.

• The counter-streaming of the 
solar wind and the back 
streaming ions provides free 
energy that generates waves.

• The waves scatter the 
particles and thermalize them.

• Thus the foreshock 
preprocesses the plasma, 
altering it upstream of the 
main shock.

Hybrid Simulations: Upstream Waves







Crossing the termination shock by Voyager 2

• V2 crossed the TS at 84 AU in 

August 2007. At TS, the solar wind 

speed decreases by a factor of about 2, 

the density increases by a factor of 2.

•The flow downstream of the TS is 

supersonic with respect to the thermal 

plasma.   --- Unexpected!!

• Probably due to the fact that most of 

the solar wind energy is transferred to 

pickup ions.
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